共查询到20条相似文献,搜索用时 12 毫秒
1.
Derivatization of small biomolecules for optimized matrix-assisted laser desorption/ionization mass spectrometry 总被引:3,自引:0,他引:3
Tholey A Wittmann C Kang MJ Bungert D Hollemeyer K Heinzle E 《Journal of mass spectrometry : JMS》2002,37(9):963-973
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) is a powerful tool for the measurement of low molecular mass compounds of biological interest. The limitations for this method are the volatility of many analytes, possible interference with matrix signals or bad ionization or desorption behavior of the compounds. We investigated the application of well-known and straightforward one-pot derivatization procedures to circumvent these problems. The derivatizations tested allow the measurement and the labeling of alcohols, aldehydes and ketones, carboxylic acids, alpha-ketocarboxylic acids and amines. 相似文献
2.
Klemm C Schröder S Glückmann M Beyermann M Krause E 《Rapid communications in mass spectrometry : RCM》2004,18(22):2697-2705
The identification of phosphorylation sites is essential for a full understanding of the cellular functions of proteins. However, mass spectrometric analysis is often hampered by the low abundance of phosphoproteins, the difficulty of obtaining full sequence coverage by specific proteolysis reactions, and the low ionization efficiency of phosphopeptides compared with their non-phosphorylated analogs. In the present work a beta-elimination/Michael addition was used to replace the phosphate groups of pSer or pThr by a group which gives rise to an enhanced ionization efficiency. In order to find optimum reaction conditions, beta-elimination/Michael addition was examined using phosphorylated model peptides. Whereas complete elimination of phosphate could be achieved by treatment with barium hydroxide in organic solvents such as ethanol or acetonitrile, the yield of the Michael adduct strongly depended on the nucleophile and the peptide sequence. Reaction with 2-phenylethanethiol, p-bromophenethylamine and ethylenediamine clearly resulted in products showing higher matrix-assisted laser desorption/ionization (MALDI) signal intensities compared with those of the corresponding phosphorylated precursors. The method was successfully used to identify phosphorylated sequences of ovalbumin and human Stat1 by in-gel derivatization with 2-phenylethanethiol and subsequent peptide mass fingerprint analysis of the trypsin digests. 相似文献
3.
The conformation and aggregation behavior of synthetic Alzheimer's amyloid peptides (Abeta) has been investigated using hydrogen-deuterium exchange measured by electrospray ionization mass spectrometry and matrix-assisted laser desorption/ionization mass spectrometry. Mass spectrometric fragmentation of deuterated Abeta peptides was carried out by collision-induced dissociation, inlet fragmentation, and post-source decay. In contrast to the C-terminally truncated peptides Abeta(1-40) and Abeta(1-36) showing full hydrogen-deuterium exchange, Abeta(1-42) and the pyroglutamyl peptide Pyr(3)-Abeta(3-42) produced more complex signal patterns resulting from the formation of beta-sheet-structured oligomers having 18-20 strongly protected protons. Using mass spectrometric fragmentation the results show that the reduced isotope exchange of Abeta(1-42) can be attributed to the central part of the chain comprising residues 8-23. This confirms involvement of the hydrophobic binding domain LVFFA in the course of Abeta aggregation and demonstrates that hydrogen-deuterium exchange in combination with mass spectrometry is well suited for structural analysis of monomeric and reversibly associated amyloid peptides using picomole quantities of material. 相似文献
4.
The S-nitrosylation of proteins is involved in the trafficking of nitric oxide (NO) in intra- and extracellular milieus. To establish a mass spectrometric method for identifying this post-translational modification of proteins, a synthetic peptide and transthyretin were S-nitrosylated in vitro and analyzed by electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The intact molecular ion species of nitrosylated compounds was identified in the ESI mass spectrum without elimination of the NO group. However, the labile nature of the S-NO bond was evident when the in-source fragmentation efficiently generated [M + H - 30](+) ions. The decomposition was prominent for multiply charged transthyretin ions with high charge states under ordinary ESI conditions, indicating that the application of minimum nozzle potentials was essential for delineating the stoichiometry of nitrosylation in proteins. With MALDI, the S-NO bond cleavage occurred during the ionization process, and the subsequent reduction generated [M + H - 29](+) ions. 相似文献
5.
The digestion of glycopeptides with endoglycosidases can be used in the process of their structural characterization, and matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) is often used to analyze the products of these digestions. In the currently accepted protocol for the endoglycosidase digestion of glycopeptides on the MALDI target, the target must be incubated at 37 degrees C, and an hour or more is needed for digestion. We have modified the procedure so that the process can be performed at room temperature in 5 to 15 min, and digestions are performed in the presence of a MALDI matrix. The endoglycosidases used for digestion were endoglycosidase H and peptide-N-glycosidase F. Glycopeptides from asialofetuin and endopolygalacturonase (EPG) II were used as standards because their glycan structures have been previously characterized. Glycopeptides with unknown glycan structures were also digested, including glycopeptides from pectate lyase, EPG I, and pectin methylesterase from Aspergillus niger. 相似文献
6.
Matamoros Fernández LE Obel N Scheller HV Roepstorff P 《Journal of mass spectrometry : JMS》2003,38(4):427-437
Structural characterization of arabinoxylans from wheat by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and electrospray ionization (ESI) mass spectrometry using a Q-TOF mass analyser (ESI-Q-TOF) or an ion trap (IT) mass analyser is presented. An arabinoxylan sample digested with endoxylanase A was analysed using MALDI-TOF mass spectrometry (MS), resulting in the identification of molecular ions for structures with up to 22 monosaccharide residues. As the two-component monosaccharides xylose and arabinose are isobaric, structures differing in the number of arabinose branching residues were indistinguishable based on molecular mass and also fragmentation pattern upon collision-induced dissociation (CID). Permethylation followed by ESI-CID analyses using ITMS was performed to obtain structural information regarding the number of arabinose branching residues and their spatial arrangement along the xylose backbone. Analysis of the signal corresponding to an oligomer with six monosaccharide residues showed the presence of at least four isomeric structures differing in degree of branching and position of the branched residue relative to the cleavage site of the enzyme. This is the first demonstration of the use of ESI-ITMS for the structural characterization of arabinoxylan mixtures. 相似文献
7.
糖链结构的质谱解析是今后糖蛋白分析中的重要研究内容,其中完整糖肽的分析,由于可以同时获得糖基化位点和对应糖链的结构信息,更具有重要意义和研究前景。本工作对质谱软电离技术在完整糖肽分析中的应用进行了研究,其中包括了基质辅助激光解吸电离(matrix-assisted laser desorption ionization, MALDI)和电喷雾电离(electrospray ionization, ESI)技术。通过平行使用两种串联质谱(tandem mass spectrometry, MS/MS)分析策略: MALDI-MS/MS和ESI-MS/MS对目标糖蛋白——辣根过氧化物酶进行分析,并讨论了其互补性。结果表明,MALDI和ESI技术各有优劣,结合串联质谱分析,可获得糖肽的糖链结构信息;两条路线互补使用,在揭示蛋白质糖基化修饰(位点和结构)的研究中十分必要。 相似文献
8.
Gregorius B Schaumlöffel D Hildebrandt A Tholey A 《Rapid communications in mass spectrometry : RCM》2010,24(22):3279-3289
Metal labelling of peptides and proteins using high-affinity metal-chelating compounds has found widespread applications in the medical and bioanalytical fields. In the present study we investigated the analysis of peptides derivatized either with cysteine- or amino group-directed metal-bound DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) chelators in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The metal complexes of DOTA were shown to be stable under MALDI-MS conditions. The introduction of the metal label led in a number of cases to significantly increased signal-to-noise (S/N) values and thus improved sensitivity of the labelled peptides compared to their unlabelled counterparts, especially for multiply labelled peptides. The presence of the labels did alter the tandem mass spectrometric (MS/MS) behaviour, namely the formation of sequence specific a-, b- and y-ion series, in dependence of the position of the label within the peptide sequence. For cysteine-derivatized peptides several label-specific reporter ions and characteristic immonium ions could be identified. Amino-directed labelling led only to the formation of characteristic immonium ions in ε-amino groups of lysine, whereas N-terminal labelling in some cases led to the formation of a(1)- and b(1)-ions. The results clearly show that MALDI-MS is suitable for the analysis of metal-labelled peptides, which was also confirmed in liquid chromatography (LC)/MALDI-based identification of proteins in a model protein mixture labelled with Cys-reactive DOTA. Here, in comparison to a run with alkylated cysteines, more than 50% more cysteine-containing peptides were identified. 相似文献
9.
10.
Satoko Akashi Kazuyoshi Noguchi Reiko Yuji Uno Tagami Kazuo Hirayama Koichi Kato HaHyung Kim Kazuhiro Tokioka Ichio Shimada Yoji Arata 《Journal of the American Society for Mass Spectrometry》1996,7(8):707-721
The amino acid sequences of mouse monoclonal antibodies have been characterized completely by mass spectrometry. Antibodies used in the present study were derived from mouse switch variant cell lines that produce four kinds of immunoglobulin Gs (IgGs). The amino acid sequences of these antibodies had not been estimated from the corresponding DNA sequence, so the sequences of IgGs derived from other strains were used as references in this study. Intra- and interchain disulfide bonds of the IgGs were reduced and carboxymethylated and the products were subjected to proteolytic digestion. The existence of N-linked oligosaccharides also was taken into account. The capabilities and limitations of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry and capillary liquid chromatography-electrospray ionization mass spectrometry are discussed in the structural characterization of the antibodies. Based on our results, allotypes of the antibodies examined are discussed. This study shows that amino acid sequences of proteins, such as IgG, can be investigated without information about the corresponding DNA sequence if appropriate reference sequences derived from other strains can be used. 相似文献
11.
One problem of matrix-assisted laser desorption ionization coupled to time-of-flight mass spectrometry is the moderate mass accuracy that typically can be obtained in routine applications, Here we report improved mass accuracy for peptides, even when low amounts and complex peptide mixtures are used. A new procedure for preparing matrix surfaces is used, and there is no need to mix the matrix with the sample or to add internal standards. Examples are shown with a mass accuracy better than 50 ppm in a peptide mixture. Peptide mapping as well as sequencing by creating “ragged ends” or “ladder sequencing” should benefit especially from the improved mass accuracy. 相似文献
12.
Krutchinsky AN Zhang W Chait BT 《Journal of the American Society for Mass Spectrometry》2000,11(6):493-504
We describe a new interface for a prototype quadrupole-quadrupole-time-of-flight (TOF) mass spectrometer (Centaur, Sciex) that allows rapid switching between electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) modes of operation. Instrument performance in both modes is comparable (i.e., resolution approximately 10,000 FWHM, mass accuracy <10 ppm, sensitivity approximately 1 fmol) because the ion source is decoupled from the TOF mass analyzer by extensive gas collisions in the quadrupole stages of the instrument. The capacity to obtain side-by-side high quality ESI and MALDI mass spectra from a single proteolytic mixture greatly facilitates the identification of proteins and elucidation of their primary structures. Improved strategies for protein identification result from this ability to measure spectra using both ionization modes in the same instrument and to perform MS/MS on singly charged as well as multiply charged ions. Examples are provided to demonstrate the utility and performance of the modified instrument. 相似文献
13.
A variety of surfactants have been tested as matrix-ion suppressors for the analysis of small molecules by matrix-assisted laser desorption/ionization time-of flight mass spectrometry. Their addition to the common matrix alpha-cyano-4-hydroxycinnamic acid (CHCA) greatly reduces the presence of matrix-related ions when added at the appropriate mole ratio of CHCA/surfactant, while still allowing the analyte signal to be observed. A range of cationic quaternary ammonium surfactants, as well as a neutral and anionic surfactant, was tested for the analysis of phenolics, phenolic acids, peptides and caffeine. It was found that the cationic surfactants, particularly cetyltrimethylammonium bromide (CTAB), were suitable for the analysis of acidic analytes. The anionic surfactant, sodium dodecyl sulfate, showed promise for peptide analysis. For trialanine, the detection limit was observed to be in the 100 femtomole range. The final matrix/surfactant mole ratio was a critical parameter for matrix ion suppression and resulting intensity of analyte signal. It was also found that the mass resolution of analytes was improved by 25-75%. Depth profiling of sample spots, by varying the number of laser shots, revealed that the surfactants tend to migrate toward the top of the droplet during crystallization, and that it is likely that the analyte is also enriched in this surface region. Here, higher analyte/surfactant concentration would reduce matrix-matrix interactions (known to be a source of matrix-derived ions). 相似文献
14.
Kevan T. Knizner Michael C. Bagley Fan Pu Nathaniel L. Elsen Jon D. Williams David C. Muddiman 《Journal of mass spectrometry : JMS》2022,57(6):e4869
Mass spectrometry (MS) is an effective analytical tool for high-throughput screening (HTS) in the drug discovery field. Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) MS is a high-throughput platform that has achieved analysis times of sub-seconds-per-sample. Due to the high-throughput analysis speed, methods are needed to increase the analyte signal while decreasing the variability in IR-MALDESI-MS analyses to improve data quality and reduce false-positive hits. The Z-factor is used as a statistic of assay quality that can be improved by reducing the variation of target ion abundances or increasing signal. Herein we report optimal solvent compositions for increasing measured analyte abundances with direct analysis by IR-MALDESI-MS. We also evaluate normalization strategies, such as adding a normalization standard that is similar or dissimilar in structure to the model target drug, to reduce the variability of measured analyte abundances with direct analyses by IR-MALDESI-MS in both positive and negative ionization modes. 相似文献
15.
Sarver A Scheffler NK Shetlar MD Gibson BW 《Journal of the American Society for Mass Spectrometry》2001,12(4):439-448
Oxidative damage to proteins can occur under physiological conditions through the action of reactive oxygen species, including those containing nitrogen such as peroxynitrite (ONO2-). Peroxynitrite has been shown in vitro to target tyrosine residues in proteins through free radical addition to produce 3-nitrotyrosine. In this work, we show that mass spectral patterns associated with 3-nitrotyrosine containing peptides allow identification of peptides containing this modification. Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry was used to characterize a synthetic peptide AAFGY(m-NO2)AR and several peptides containing 3-nitrotyrosine derived from bovine serum albumin treated with tetranitromethane. A unique series of ions were found for these peptides in addition to the mass shift of +45 Da corresponding to the addition of the nitro group. Specifically, two additional ions were observed at roughly equal abundance that correspond to the loss of one and two oxygens, and at lower abundances, two ions are seen that suggest the formation of hydroxylamine and amine derivatives. These latter four components appear to originate by laser-induced photochemical decomposition. MALDI-MS analysis of the synthetic peptide containing 3-nitrotyrosine revealed this same pattern. Post-source decay (PSD) MALDI-time-of-flight (TOF) and collisional activation using a prototype MALDI quadrupole TOF yielded extensive fragmentation that allowed site-specific identification of 3-nitrotyrosine. Conversion of peptides containing 3-nitrotyrosine to 3-aminotyrosine with Na2S2O4 yielded a single molecular ion by MALDI with an abundant sidechain loss under PSD conditions. These observations suggest that MALDI can provide a selective method for the analysis and characterization of 3-nitrotyrosine-containing peptides. 相似文献
16.
John R. Perkins Brian Smith Richard T. Gallagher Davis S. Jones Stephen C. Davis Andrew D. Hoffman Kenneth B. Tomer 《Journal of the American Society for Mass Spectrometry》1993,4(8):670-684
Electrospray mass spectrometry (ES/MS) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI/TOF/MS) were used to provide mass spectra from seven elapid snake venoms. Spectral interpretation was much simpler for MALDI/TOF/MS. ES/MS proved more useful for the provision of molecular weight data for very closely related peptides, but suppression of higher molecular weight compounds was seen to occur during flow injection analysis. MALDI/TOF/MS proved useful for providing a complete picture of the venom, but the low resolution led to obscuring of major ions, and the mass accuracy was poorer for known peptides. Suppression also occurred during MALDI/TOF/MS but could be overcome using alternative matrices because the spectra were very dependent on the choice of matrix. ES/MS and MALDI/TOF/MS provide complementary and confirmatory information such that for the anal sis of complex peptide mixtures (snake venoms), the use of both techniques is desirable. 相似文献
17.
Defined conditions of EOF along with different pH values of the BGE were compared for the purpose of analyzing glycopetides by CZE coupled to MS (CZE-MS). Hyphenation to MS involved ESI as well as MALDI, and single-stage and multistage MS were applied. Variation of the EOF was accomplished by selecting appropriate coatings for the capillary, namely hexadimethrine bromide (HDMB) and HDMB/dextran sulfate. A high and reproducible anodic and cathodic EOF, respectively, was obtained in both approaches, allowing the detection of analytes with net positive as well as negative charge in one single run. Thus, a fast and sensitive determination of the glycopeptides in a tryptic digest of antithrombin, chosen as a test sample, was achieved. Ionization suppression effects, a phenomenon typically observed with glycopeptides in MS analysis, were minimized thanks to separation from other peptides present. The high stability of the coatings permitted the generation of mass spectra without interfering peaks originating from the coating polymers. The high EOF generated by the coatings facilitated the maintenance of a stable spray when coupling to ESI-MS, and a stable CZE current when working with a sheath flow-assisted analyte deposition onto MALDI targets, respectively. In conclusion, CZE-MS could be demonstrated as a robust complementary method to capillary RP-HPLC-MS in combination with both soft-ionization techniques, ESI and MALDI, generally, and particularly in the context of glycopeptide analysis. 相似文献
18.
Tyrosinase-induced oxidation of tyrosine is known to lead to melanin by cross-linking of 5,6-dihydroxyindole (DHI) and indole-5,6-quinone intermediates. However, tyrosinase-induced cross-linking of tyrosine-containing peptides has not been reported. We observed tyrosinase-induced adducts of tyrosine-containing peptides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). MALDI-TOFMS was also used to observe tyrosine adducts at various levels of oxidation derived from acid hydrolysis of the peptide adducts. The rate of tyrosinase-induced browning of lys-tyr-lys was about half of that of tyrosine. These results indicate that tyrosinase-induced browning of tyrosine-containing peptides via direct oxidation and cross-linking of the benzene ring of the tyrosine residue occurs at a significant rate and needs to be considered in melanogenesis. 相似文献
19.
In our continuing studies to isolate water-soluble vacuolar pigments, we expect to elucidate more structural details using mass spectrometry (MS). Because of its sensitivity, only a small amount of pigment extracted from natural plants is required for MS measurement. Nuclear magnetic resonance is also a useful spectroscopic method for structural determination. In this study, two soft ionization techniques, electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI), on time-of-flight (TOF) mass spectrometers, were used to analyze five polyacylated anthocyanins with more than two aromatic acid molecules in the side chains. ESI is advantageous for the detection of individual molecular ions, while MALDI is essential for the detection of characteristic fragment ions originating from the anthocyanidin. Although 2,5-dihydroxybenzoic acid (DHBA) is an effective matrix in MALDI-TOFMS to obtain informative fragment ions of polyacylated anthocyanins, α-cyano-4-hydroxycinnamic acid (CHCA) is the preferred matrix for the identification of aglycones. In particular, in measurements of polyacylated anthocyanins with two acylated glycoside chains, fragment ions originating from anthocyanidin can only be observed in MALDI-TOFMS using CHCA as the matrix. 相似文献
20.
Takayama M 《Journal of the American Society for Mass Spectrometry》2001,12(4):420-427
In-source decay (ISD) of peptides, coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, has been examined to determine the influence of the matrix, the susceptibility of amino-acid residues to ISD, and the effect of extraction delay times. Out of nine di- and tri-hydroxybenzoic acids and three cinnamic derivatives tested, the most suitable matrix for ISD was 2,5-dihydroxybenzoic acid. The amine bond at Xxx-Gly and Xxx-Val residues was less susceptible than other amino-acid residues to ISD; however, the more sensitive residue(s) were not as clear. Using a peptide that gave the y(n)- and (z(n) + 2)-series product ions, it was confirmed that amide-bond cleavage (formation of the y(n)-series ions) accompanied metastable peaks, whereas metastable peaks were never observed with amine-bond cleavage [formation of the (z(n) + 2)-series ions]. Furthermore, abundant c(n)-series ions, which originate from amine-bond cleavage on the peptide backbone, were observed whenever a minimum delay time of 38 ns or continuous extraction was used to obtain spectra. These data indicate that amine-bond cleavage in ISD takes place on the ionization time scale before the energy randomization is completed. 相似文献