首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An analytical anharmonic six-dimensional three-sheeted potential energy surface for the ground and first excited states of the ammonia cation has been developed which is tailored to model the ultrafast photoinduced dynamics. Selected ab initio cuts, obtained by multireference configuration interaction calculations, have been used to determine the parameters of a diabatic representation for this Jahn-Teller and pseudo-Jahn-Teller system. The model includes higher-order coupling terms both for the Jahn-Teller and for the pseudo-Jahn-Teller matrix elements. The relaxation to the ground state is possible via dynamical pseudo-Jahn-Teller couplings involving the asymmetric bending and stretching coordinates. The photoelectron spectrum of NH3 and the internal conversion dynamics of NH3+ have been determined by wave packet propagation calculations employing the multiconfigurational time-dependent Hartree method. Three different time scales are found in the dynamics calculations for the second absorption band. The ultrafast Jahn-Teller dynamics of the two excited states occurs on a 5 fs time scale. The major part of the internal conversion to the ground state takes place within a short time scale of 20 fs. This fast internal conversion is, however, incomplete and the remaining excited state population does not decay completely even within 100 fs.  相似文献   

2.
Quantum dynamical simulations of vibrational spectroscopy have been carried out for glycine dipeptide (CH(3)-CO-NH-CH(2)-CO-NH-CH(3)). Conformational structure and dynamics are modeled in terms of the two Ramachandran dihedral angles of the molecular backbone. Potential energy surfaces and harmonic frequencies are obtained from electronic structure calculations at the density functional theory (DFT) [B3LYP/6-31+G(d)] level. The ordering of the energetically most stable isomers (C(7) and C(5)) is reversed upon inclusion of the quantum mechanical zero point vibrational energy. Vibrational spectra of various isomers show distinct differences, mainly in the region of the amide modes, thereby relating conformational structures and vibrational spectra. Conformational dynamics is modeled by propagation of quantum mechanical wave packets. Assuming a directed energy transfer to the torsional degrees of freedom, transitions between the C(7) and C(5) minimum energy structures occur on a sub-picosecond time scale (700...800 fs). Vibrationally nonadiabatic effects are investigated for the case of the coupled, fundamentally excited amide I states. Using a two state-two mode model, the resulting wave packet dynamics is found to be strongly nonadiabatic due to the presence of a seam of the two potential energy surfaces. Initially prepared adiabatic vibrational states decay upon conformational change on a time scale of 200...500 fs with population transfer of more than 50% between the coupled amide I states. Also the vibrational energy transport between localized (excitonic) amide I vibrational states is strongly influenced by torsional dynamics of the molecular backbone where both enhanced and reduced decay rates are found. All these observations should allow the detection of conformational changes by means of time-dependent vibrational spectroscopy.  相似文献   

3.
The reaction dynamics of excited electronic states in nucleic acid bases is a key process in DNA photodamage. Recent ultrafast spectroscopy experiments have shown multicomponent decays of excited uracil and thymine, tentatively assigned to nonadiabatic transitions involving multiple electronic states. Using both quantum chemistry and first principles quantum molecular dynamics methods we show that a true minimum on the bright S2 electronic state is responsible for the first step that occurs on a femtosecond time scale. Thus the observed femtosecond decay does not correspond to surface crossing as previously thought. We suggest that subsequent barrier crossing to the minimal energy S2/S1 conical intersection is responsible for the picosecond decay.  相似文献   

4.
《Chemical physics letters》1987,140(2):133-141
We consider the common situation of strong vibronic coupling of an optically bright (in absorption from the ground state) excited electronic state to a lower-lying dark electronic state in a polyatomic molecule. It is shown that for sufficiently short pump and probe laser pulses a time-resolved experiment measures the total time-dependent population probability P(t) of the bright state. For a realistic model problem (representing the three lowest electronic states of the benzene cation) a conical intersection of the potential energy surfaces of the bright and the dark state causes an ultrafast initial decay of P(t) on a femtosecond time scale, followed by quasiperiodic recurrences. These recurrences show up as femtosecond quantum beats in the time-resolved pump-probe signal. The beating frequency is related to the vibrational frequency of the dominant accepting mode of the system.  相似文献   

5.
In order to elucidate the difference between nitramine energetic materials, such as RDX (1,3,5-trinitro-1,3,5-triazacyclohexane), HMX (1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane), and CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane), and their nonenergetic model systems, including 1,4-dinitropiperazine, nitropiperidine, nitropyrrolidine, and dimethylnitramine, both nanosecond mass resolved excitation spectroscopy and femtosecond pump-probe spectroscopy in the UV spectral region have been employed to investigate the mechanisms and dynamics of the excited electronic state photodissociation of these materials. The NO molecule is an initial decomposition product of all systems. The NO molecule from the decomposition of energetic materials displays cold rotational and hot vibrational spectral structures. Conversely, the NO molecule from the decomposition of model systems shows relatively hot rotational and cold vibrational spectra. In addition, the intensity of the NO ion signal from energetic materials is proportional to the number of nitramine functional groups in the molecule. Based upon experimental observations and theoretical calculations of the potential energy surface for these systems, we suggest that energetic materials dissociate from ground electronic states after internal conversion from their first excited states, and model systems dissociate from their first excited states. In both cases a nitro-nitrite isomerization is suggested to be part of the decomposition mechanism. Parent ions of dimethylnitramine and nitropyrrolidine are observed in femtosecond experiments. All the other molecules generate NO as a decomposition product even in the femtosecond time regime. The dynamics of the formation of the NO product is faster than 180 fs, which is equivalent to the time duration of our laser pulse.  相似文献   

6.
We present a model to evaluate the radiative and nonradiative lifetimes of electronic excited states of a molecule close to a metal particle of complex shape and, possibly, in the presence of a solvent. The molecule is treated quantum mechanically at Hartree-Fock (HF) or density-functional theory (DFT) level. The metal/solvent is considered as a continuous body, characterized by its frequency dependent local dielectric constant. For simple metal shapes (planar infinite surface and spherical particle) a version of the polarizable continuum model based on the integral equation formalism has been used, while an alternative methodology has been implemented to treat metal particles of arbitrary shape. In both cases, equations have been numerically solved using a boundary element method. Excitation energies and nonradiative decay rates due to the energy transfer from the molecule to the metal are evaluated exploiting the linear response theory (TDHF or TDDFT where TD--time dependent). The radiative decay rate of the whole system (molecule + metal/solvent) is calculated, still using a continuum model, in terms of the response of the surrounding to the molecular transition. The model presented has been applied to the study of the radiative and nonradiative lifetimes of a lissamine molecule in solution (water) and close to gold spherical nanoparticles of different radius. In addition, the influence of the metal shape has been analyzed by performing calculations on a system composed by a coumarin-type molecule close to silver aggregates of complex shape.  相似文献   

7.
8.
By considering the molecule and metal to form a conjoined system, we derive an expression for the observed Raman spectrum in surface-enhanced Raman scattering. The metal levels are considered to consist of a continuum with levels filled up to the Fermi level, and empty above, while the molecule has discrete levels filled up to the highest occupied orbital, and empty above that. It is presumed that the Fermi level of the metal lies between the highest filled and the lowest unfilled level of the molecule. The molecule levels are then coupled to the metal continuum both in the filled and unfilled levels, and using the solutions to this problem provided by Fano, we derive an expression for the transition amplitude between the ground stationary state and some excited stationary state of the molecule-metal system. It is shown that three resonances contribute to the overall enhancement; namely, the surface plasmon resonance, the molecular resonances, as well as charge-transfer resonances between the molecule and metal. Furthermore, these resonances are linked by terms in the numerator, which result in SERS selection rules. These linked resonances cannot be separated, accounting for many of the observed SERS phenomena. The molecule-metal coupling is interpreted in terms of a deformation potential which is compared to the Herzberg-Teller vibronic coupling constant. We show that one term in the sum involves coupling between the surface plasmon transition dipole and the molecular transition dipole. They are coupled through the deformation potential connecting to charge-transfer states. Another term is shown to involve coupling between the charge-transfer transition and the molecular transition dipoles. These are coupled by the deformation potential connecting to plasmon resonance states. By applying the selection rules to the cases of dimer and trimer nanoparticles we show that the SERS spectrum can vary considerably with excitation wavelength, depending on which plasmon and/or charge-transfer resonance is excited.  相似文献   

9.
The electronically excited singlet states of complexes of uracil with one water molecule have been studied theoretically using ab initio multireference configuration interaction methods. In agreement with previous theoretical and experimental results, four cyclic isomers of uracil forming hydrogen bonds with the water molecule have been located with energies within 0.2 eV from the lowest energy isomer. Focus has been given on the mechanism for radiationless decay to the ground state after initial UV absorption and on the effect of complexation with water on previously reported radiationless decay pathways. Features on the excited state potential energy surfaces, such as minima, transition states and conical intersections, have been located for all isomers and compared with those of free uracil. The hydrogen-bonded water molecule changes the relative energies of these features and may lead to different excited state dynamics and lifetimes, in agreement with experimental observations.  相似文献   

10.
We present a kinetic analysis of the nonadiabatic decay mechanism of an excited state hydrated electron to the ground state. The theoretical treatment is based on a quantized, gap dependent golden rule rate constant formula which describes the nonadiabatic transition rate between two quantum states. The rate formula is expressed in terms of quantum time correlation functions of the energy gap and of the nonadiabatic coupling. These gap dependent quantities are evaluated from three different sets of mixed quantum-classical molecular dynamics simulations of a hydrated electron equilibrated (a) in its ground state, (b) in its first excited state, and (c) on a hypothetical mixed potential energy surface which is the average of the ground and the first excited electronic states. The quantized, gap dependent rate results are applied in a phenomenological kinetic equation which provides the survival probability function of the excited state electron. Although the lifetime of the equilibrated excited state electron is computed to be very short (well under 100 fs), the survival probability function for the nonequilibrium process in pump-probe experiments yields an effective excited state lifetime of around 300 fs, a value that is consistent with the findings of several experimental groups and previous theoretical estimates.  相似文献   

11.
Equilibrium and nonequilibrium dynamics of a blue copper protein plastocyanin in an oxidized state are studied by molecular dynamics (MD) simulation. Potential energy functions of the lowest seven electronic states, including ligand-to-metal charge-transfer (LMCT) and copper d --> d excited states, were taken from our previous work (Ando, K. J. Phys. Chem. B 2004, 108, 3940), which employed ab initio molecular orbital and density functional calculations on the active-site model. The equilibrium MD simulations in the ground state indicate that ligand motions coupled to transition from the ground state to the LMCT state are mostly represented by stretching and bending vibrations of the Cu-S(Cys) distance, Ndelta(His)-Cu-Ndelta(His) angle, and S(Cys)-Cu-[Ndelta(His)]2 trigonal pyramid structure. The nonequilibrium dynamics on the LMCT potential exhibit rapid decays in which surface crossings to the d --> d and the first excited states occur in 70-80 fs. The crossing dynamics mostly correlate with cleavage of the Cu-S(Cys) bond and the associated response in the Ndelta(His)-Cu-Ndelta(His) moiety. The average dynamics of the vertical energy gap coordinates exhibit an overdamped decay with a recurrence oscillation in 500 fs, which shows clear coherence surviving after the ensemble averaging. This oscillation stems mostly from the recoiling motion of the Ndelta(His)-Cu-Ndelta(His) part. The dynamics of the energy gaps after this coherent oscillation are randomized such that the ensemble average yields flat profiles along time, although each single trajectory exhibits fluctuations with amplitudes large enough to reach surface crossings. These indicate that the relaxation from the LMCT state first occurs via ballistic and coherent potential crossings in 70-80 and 500 fs, followed by thermally activated random transitions.  相似文献   

12.
Molecular vibration and rotation play a significant role in the intramolecular photoexcitation dynamics of the so-called intermediate-case molecule, and the fluorescence intensity, decay and polarization of s-triazine vapor are shown to depend on the excited rovibronic level of the S1 state. Fluorescence characteristics are interpreted by assuming three zero-order states: (1) a zero-order singlet state that carries the absorption intensity and emits fluorescence with sharp structure; (2) zero-order singlet states that do not carry the absorption intensity but emit broad fluorescence; and (3) zero-order triplet states. The interaction among these states depends not only on the vibrational level but also on the rotational level excited. It is suggested that the number of triplet states coupled to the singlet state increases with increasing excess vibrational energy. It is also suggested that K-scrambling occurs both in the triplet manifold following intersystem crossing (ISC) and in the singlet manifold following intramolecular vibrational energy redistribution (IVR). The fluorescence intensity and decay of s-triazine vapor are significantly influenced by a magnetic field, and the field effects are interpreted in terms of the spin decoupling in the triplet manifold following ISC; the role of external magnetic fields is to mix the spin sublevels of different rovibronic levels coupled to the excited singlet state. Magnetic depolarization of fluorescence also occurs because of the efficient interaction between the excited singlet state and the triplet state.  相似文献   

13.
A method in time domain is proposed to investigate resonance Raman spectra of absorbed molecules on semiconductor surfaces. The charge transfer at the molecule-surface interface is incorporated with the use of an Anderson-Newns type Hamiltonian, where the surface continuum state is dealt with an expansion of Legendre polynomials for fast numerical convergence. From a model test, it is found that the intensities of Raman modes in the sole molecule generally decrease as the molecule-surface interaction is switched on, except that the energy gaps between the molecular excited state and the bottom of the band are at special values. New Raman peaks which are not observed in the sole molecule, however, appear and are greatly enhanced. The enhancement depends on the electronic coupling and the energy gap. It is also highly sensitive to the mode-specific reorganization energy in the charge transfer state, and a thousand times enhancement can be obtained at a certain reorganization energy. The corresponding electron dynamics is revealed by the population decay from the absorbed molecule.  相似文献   

14.
Electronically nonadiabatic processes such as ultrafast internal conversion (IC) from an upper electronic state (S(1)) to the ground electronic state (S(0)) though a conical intersection (CI), can play an essential role in the initial steps of the decomposition of energetic materials. Such nonradiative processes following electronic excitation can quench emission and store the excitation energy in the vibrational degrees of freedom of the ground electronic state. This excess vibrational energy in the ground electronic state can dissociate most of the chemical bonds of the molecule and can generate stable, small molecule products. The present study determines ultrafast IC dynamics of a model nitramine energetic material, dimethylnitramine (DMNA). Femtosecond (fs) pump-probe spectroscopy, for which a pump pulse at 271 nm and a probe pulse at 405.6 nm are used, is employed to elucidate the IC dynamics of this molecule from its S(1) excited state. A very short lifetime of the S(1) excited state (~50 ± 16 fs) is determined for DMNA. Complete active space self-consistent field (CASSCF) calculations show that an (S(1)/S(0))(CI) CI is responsible for this ultrafast decay from S(1) to S(0). This decay occurs through a reaction coordinate involving an out-of-plane bending mode of the DMNA NO(2) moiety. The 271 nm excitation of DMNA is not sufficient to dissociate the molecule on the S(1) potential energy surface (PES) through an adiabatic NO(2) elimination pathway.  相似文献   

15.
The double bond photoisomerization of fulvene has been studied with quantum dynamics calculations using the multi-configuration time-dependent Hartree method. Fulvene is a test case to develop optical control strategies based on the knowledge of the excited state decay mechanism. The decay takes place on a time scale of several hundred femtoseconds, and the potential energy surface is centered around a conical intersection seam between the ground and excited state. The competition between unreactive decay and photoisomerization depends on the region of the seam accessed during the decay. The dynamics are carried out on a four-dimensional model surface, parametrized from complete active space self-consistent field calculations, that captures the main features of the seam (energy and locus of the seam and associated branching space vectors). Wave packet propagations initiated by single laser pulses of 5-25 fs duration and 1.85-4 eV excitation energy show the principal characteristics of the first 150 fs of the photodynamics. Initially, the excitation energy is transferred to a bond stretching mode that leads the wave packet to the seam, inducing the regeneration of the reactant. The photoisomerization starts after the vibrational energy has flowed from the bond stretching to the torsional mode. In our propagations, intramolecular energy redistribution (IVR) is accelerated for higher excess energies along the bond stretch mode. Thus, the competition between unreactive decay and isomerization depends on the rate of IVR between the bond stretch and torsion coordinates, which in turn depends on the excitation energy. These results set the ground for the development of future optical control strategies.  相似文献   

16.
The problem of vibrational wave packet dynamics in the system of two electronic states of a diatomic molecule, where the states are coupled by infinitely short light pulses, is solved. The electronic states were modeled by shifted harmonic oscillators with different frequencies. Exact expressions for the probability densities of the wave packets in the ground and excited states were derived. The spatial, spectral, and temporal characteristics of the wave packets, namely, the range of motion, spatial width, mean energy, spectral width (the mean number of vibrational states in a wave packet), and the autocorrelation function, were calculated as functions of the molecular parameters (the frequency ratio and the distance between the potential minima) and of the delay time between the light pulses. The possibility of controlling the mean energy and spectral width of the wave packets in the ground electronic state by varying the delay time is considered. It was shown that "squeezed" wave packets can be prepared in the ground electronic state if the upper electronic state is shallow.  相似文献   

17.
Abstract We report direct femtosecond measurements of the excited state dynamics of hematoporphyrin derivative (HpD) in solution. The dynamics are found to be very sensitive to the solvent and pH of aqueous solutions. The decay of the excited singlet states is much faster in acidic and pH 7 buffer aqueous solutions (<230 ps) than in basic aqueous solutions or organic solvents (> 10 ns). The dynamical results show strong correlation with static fluorescence measurements: weaker fluorescence in acidic and pH 7 buffer solutions corresponding to shorter-lived excited states. A new fast decay component with a time constant around 5 ps is identified both in acidic aqueous solutions and in organic solvents such as acetone and attributed to internal conversion from the second to the first excited singlet state of aggregates or certain oligomers in HpD, in accord with the observation that the fast decay component is larger at a higher concentration. Oxygen is found to have no effect on the dynamics on the time scale investigated, 1 ns, indicating that oxygen quenching of the singlet excited states is insignificant on this time scale. The sensitive solvent and pH dependence of the excited state dynamics has important clinical implications in the use of HpD as a photosensitizing agent.  相似文献   

18.
We report picosecond-resolved measurement of the fluorescence of a well-known biologically relevant probe, dansyl chromophore at the surface of a cationic micelle (cetyltrimethylammonium bromide, CTAB). The dansyl chromophore has environmentally sensitive fluorescence quantum yields and emission maxima, along with large Stokes shift. In order to study the solvation dynamics of the micellar environment, we measured the fluorescence of dansyl chromophore attached to the micellar surface. The fluorescence transients were observed to decay (with time constant approximately 350 ps) in the blue end and rise with similar timescale in the red end, indicative of solvation dynamics of the environment. The solvation correlation function is measured to decay with time constant 338 ps, which is much slower than that of ordinary bulk water. Time-resolved anisotropy of the dansyl chromophore shows a bi-exponential decay with time constants 413 ps (23%) and 1.3 ns (77%), which is considerably slower than that in free solvents revealing the rigidity of the dansyl-micelle complex. Time-resolved area-normalized emission spectroscopic (TRANES) analysis of the time dependent emission spectra of the dansyl chromophore in the micellar environment shows an isoemissive point at 21066 cm-1. This indicates the fluorescence of the chromophore contains emission from two kinds of excited states namely locally excited state (prior to charge transfer) and charge transfer state. The nature of the solvation dynamics in the micellar environments is therefore explored from the time-resolved anisotropy measurement coupled with the TRANES analysis of the fluorescence transients. The time scale of the solvation is important for the mechanism of molecular recognition.  相似文献   

19.
20.
Coherence in the metal-metal-to-ligand-charge transfer (MMLCT) excited state of diplatinum molecule [Pt(ppy)(μ-(t)Bu(2)pz)](2) has been investigated through the observed oscillatory features and their corresponding frequencies as well as polarization dependence in the single-wavelength transient absorption (TA) anisotropy signals. Anticorrelated parallel and perpendicular TA signals with respect to the excitation polarization direction were captured, while minimal oscillatory features were observed in the magic angle TA signal. The combined analysis of the experimental results coupled with those previous calculated in the literature maps out a plausible excited state trajectory on the potential energy surface, suggesting that (1) the two energetically close MMLCT excited states due to the symmetry of the molecule may be electronically and coherently coupled with the charge density shifting back and forth between the two phenylpyridine (ppy) ligands, (2) the electronic coupling strength in the (1)MMLCT and (3)MMLCT states may be extracted from the oscillation frequencies of the TA signals to be 160 and 55 cm(-1), respectively, (3) a stepwise intersystem crossing cascades follows (1)MMLCT → (3)MMLCT (T(1b)) → (3)MMLCT (T(1a)), and (4) a possible electronic coherence can be modulated via the Pt-Pt σ-interactions over a picosecond and survive the first step of intersystem crossing. Future experiments are in progress to further investigate the origin of the oscillatory features. These experimental observations may have general implications in design of multimetal center complexes for photoactivated reactions where coherence in the excited states may facilitate directional charge or energy transfer along a certain direction between different parts of a molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号