首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tunable vacuum ultraviolet (VUV) photoionization studies of water clusters are performed using 10-14 eV synchrotron radiation and analyzed by reflectron time-of-flight (TOF) mass spectrometry. Photoionization efficiency (PIE) curves for protonated water clusters (H2O)(n)H+ are measured with 50 meV energy resolution. The appearance energies of a series of protonated water clusters are determined from the photoionization threshold for clusters composed of up to 79 molecules. These appearance energies represent an upper limit of the adiabatic ionization energy of the corresponding parent neutral water cluster in the supersonic molecular beam. The experimental results show a sharp drop in the appearance energy for the small neutral water clusters (from 12.62 +/- 0.05 to 10.94 +/- 0.06 eV, for H2O and (H2O)4, respectively), followed by a gradual decrease for clusters up to (H2O)23 converging to a value of 10.6 eV (+/-0.2 eV). The dissociation energy to remove a water molecule from the corresponding neutral water cluster is derived through thermodynamic cycles utilizing the dissociation energies of protonated water clusters reported previously in the literature. The experimental results show a gradual decrease of the dissociation energy for removal of one water molecule for small neutral water clusters (3 相似文献   

2.
We report solid-state 17O NMR determination of the 17O NMR tensors for the keto carbonyl oxygen (O6) of guanine in two 17O-enriched guanosine derivatives: [6-17O]guanosine (G1) and 2',3',5'-O-triacetyl-[6-17O]guanosine (G2). In G1.2H2O, guanosine molecules form hydrogen-bonded G-ribbons where the guanine bases are linked by O6...H-N2 and N7...H-N7 hydrogen bonds in a zigzag fashion. In addition, the keto carbonyl oxygen O6 is also weakly hydrogen-bonded to two water molecules of hydration. The experimental 17O NMR tensors determined for the two independent molecules in the asymmetric unit of G1.2H2O are: Molecule A, CQ=7.8+/-0.1 MHz, etaQ=0.45+/-0.05, deltaiso=263+/-2, delta11=460+/-5, delta22=360+/-5, delta33=-30+/-5 ppm; Molecule B, CQ=7.7+/-0.1 MHz, etaQ=0.55+/-0.05, deltaiso=250+/-2, delta11=440+/-5, delta22=340+/-5, delta33=-30+/-5 ppm. In G1/K+ gel, guanosine molecules form extensively stacking G-quartets. In each G-quartet, four guanine bases are linked together by four pairs of O6...H-N1 and N7...H-N2 hydrogen bonds in a cyclic fashion. In addition, each O6 atom is simultaneously coordinated to two K+ ions. For G1/K+ gel, the experimental 17O NMR tensors are: CQ=7.2+/-0.1 MHz, etaQ=0.68+/-0.05, deltaiso=232+/-2, delta11=400+/-5, delta22=300+/-5, delta33=-20+/-5 ppm. In the presence of divalent cations such as Sr2+, Ba2+, and Pb2+, G2 molecules form discrete octamers containing two stacking G-quartets and a central metal ion, that is, (G2)4-M2+-(G2)4. In this case, each O6 atom of the G-quartet is coordinated to only one metal ion. For G2/M2+ octamers, the experimental 17O NMR parameters are: Sr2+, CQ=6.8+/-0.1 MHz, etaQ=1.00+/-0.05, deltaiso=232+/-2 ppm; Ba2+, CQ=7.0+/-0.1 MHz, etaQ=0.68+/-0.05, deltaiso=232+/-2 ppm; Pb2+, CQ=7.2+/-0.1 MHz, etaQ=1.00+/-0.05, deltaiso=232+/-2 ppm. We also perform extensive quantum chemical calculations for the 17O NMR tensors in both G-ribbons and G-quartets. Our results demonstrate that the 17O chemical shift tensor and quadrupole coupling tensor are very sensitive to the presence of hydrogen bonding and ion-carbonyl interactions. Furthermore, the effect from ion-carbonyl interactions is several times stronger than that from hydrogen-bonding interactions. Our results establish a basis for using solid-state 17O NMR as a probe in the study of ion binding in G-quadruplex DNA and ion channel proteins.  相似文献   

3.
Electronic properties of water clusters (H2O)(n), with n=2, 4, 8, 10, 15, 20, and 30 molecules were investigated by sequential Monte Carlo/density-functional theory (DFT) calculations. DFT calculations were carried out over uncorrelated configurations generated by Monte Carlo simulations of liquid water with a reparametrized exchange-correlation functional that reproduces the experimental information on the electronic properties (first ionization energy and highest occupied molecular orbital-lowest unoccupied molecular orbital gap) of the water dimer. The dependence of electronic properties on the cluster size (n) shows that the density of states (DOS) of small water clusters (n>10) exhibits the same basic features that are typical of larger aggregates, such as the mixing of the 3a1 and 1b1 valence bands. When long-ranged polarization effects are taken into account by the introduction of embedding charges, the DOS associated with 3a1 orbitals is significantly enhanced. In agreement with valence-band photoelectron spectra of liquid water, the 1b1, 3a1, and 1b2 electron binding energies in water aggregates are redshifted by approximately 1 eV relative to the isolated molecule. By extrapolating the results for larger clusters the threshold energy for photoelectron emission is 9.6+/-0.15 eV (free clusters) and 10.58+/-0.10 eV (embedded clusters). Our results for the electron affinity (V0=-0.17+/-0.05 eV) and adiabatic band gap (E(G,Ad)=6.83+/-0.05 eV) of liquid water are in excellent agreement with recent information from theoretical and experimental works.  相似文献   

4.
Enthalpy changes for the binding of malonate, citrate, 1,2,3-propanetricarboxylate and 1,2,3,4-butanetetracarboxylate by fully methyl substituted linear polyammonium cations (with the general formula C3nNnH(8n + 2)n+, with n = 1,2,3) were determined calorimetrically. Enthalpy changes were also determined for the binding of malonate by unsubstituted polyammonium cations (with the general formula C2(n - 1)NnH(6n - 2)n+, n = 1...6). delta H0/kJ mol-1 values are always positive and strongly dependent on the charges involved in the formation reaction. Mean values for delta G0 and T delta S0 were obtained as a function of the charge product zeta = Zanion/ Zcation: -delta G0/kJmol-1 = (4.0 +/- 0.4) zeta, T delta S0/kJmol-1 = (5.9 +/- 0.1) zeta (substituted polyamines), and -delta G0/kJmol-1 = (3.5 +/- 0.2) zeta, T delta S0/kJmol-1 = (5.0 +/- 0.4) zeta (unsubstituted polyamines). For both classes of amines it was found that T delta S0 vs. delta G0 is linear with a correlation coefficient of r = 0.9618. Crude approximation gives -delta G0/kJmol-1 = (7.0 +/- 0.4) n-1, T delta S0/kJmol-1 = (10.0 +/- 0.8) n-1 for unsubstituted amines and -delta G0/kJmol-1 = (8.0 +/- 0.8) n-1, T delta S0/kJmol-1 = (11.8 +/- 2.0) n-1 (n = number of possible salt bridges, or single interactions) for substituted amines.  相似文献   

5.
In this work, we report on the vacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters. Clusters of methanol with water are generated via co-expansion of the gas phase constituents in a continuous supersonic jet expansion of methanol and water seeded in Ar. The resulting clusters are investigated by single photon ionization with tunable vacuum-ultraviolet synchrotron radiation and mass analyzed using reflectron mass spectrometry. Protonated methanol clusters of the form (CH3OH)nH(+) (n = 1-12) dominate the mass spectrum below the ionization energy of the methanol monomer. With an increase in water concentration, small amounts of mixed clusters of the form (CH3OH)n(H2O)H(+) (n = 2-11) are detected. The only unprotonated species observed in this work are the methanol monomer and dimer. Appearance energies are obtained from the photoionization efficiency (PIE) curves for CH3OH(+), (CH3OH)2(+), (CH3OH)nH(+) (n = 1-9), and (CH3OH)n(H2O)H(+) (n = 2-9) as a function of photon energy. With an increase in the water content in the molecular beam, there is an enhancement of photoionization intensity for the methanol dimer and protonated methanol monomer at threshold. These results are compared and contrasted to previous experimental observations.  相似文献   

6.
A pH titration study shows that 6(A)-((2-(bis(2-aminoethyl)amino)ethyl)amino)-6(A)-deoxy-beta-cyclodextrin (betaCDtren) forms binary metallocyclodextrins, [M(betaCDtren)](2+), for which log(K/dm(3) mol(-)(1)) = 11.65 +/- 0.06, 17.29 +/- 0.05, and 12.25 +/- 0.03, respectively, when M(2+) = Ni(2+), Cu(2+), and Zn(2+), where K is the stability constant in aqueous solution at 298.2 K and I = 0.10 mol dm(-)(3) (NaClO(4)). The ternary metallocyclodextrins [M(betaCDtren)Trp](+), where Trp(-) is the tryptophan anion, are characterized by log(K/dm(3) mol(-)(1)) = 8.2 +/- 0.2 and 8.1 +/- 0.2, 9.5 +/- 0.3 and 9.4 +/- 0.2, and 8.1 +/- 0.1 and 8.3 +/- 0.1, respectively, where the first and second values represent the stepwise stability constants for the complexation of (R)- and (S)-Trp(-), respectively, when M(2+) = Ni(2+), Cu(2+), and Zn(2+). From comparisons of stabilities and UV-visible spectra, the binary and ternary metallocyclodextrins appear to be six-coordinate when M(2+) = Ni(2+) and Zn(2+) and five-coordinate when M(2+) = Cu(2+). The factors affecting the stoichiometries and stabilities of the metallocyclodextrins, are discussed and comparisons are made with related systems.  相似文献   

7.
The photoionization efficiency (PIE) and pulsed field ionization-photoion (PFI-PI) spectra for sulfur atoms S(3P2,1,0) and S(1D2) resulting from the 193.3 nm photodissociation of CS2 have been measured using tunable vacuum ultraviolet (vuv) laser radiation in the frequency range of 82 750-83 570 cm(-1). The PIE spectrum of S(3P2,1,0) near their ionization threshold exhibits steplike structures. On the basis of the velocity-mapped ion-imaging measurements, four strong autoionizing peaks observed in the PIE measurement in this frequency range have been identified to originate from vuv excitation of S(1D2). The PFI-PI measurement reveals over 120 previously unidentified new Rydberg lines. They have been assigned as Rydberg states [3p3(4S composite function nd3 D composite function (n=17-64)] converging to the ground ionic state S+(4S composite function) formed by vuv excitations of S(3P2,1,0). The converging limits of these Rydberg series have provided more accurate values, 82 985.43+/-0.05, 83 162.94+/-0.05, and 83 559.04+/-0.05 cm(-1) for the respective ionization energies of S(3P0), S(3P1), and S(3P2) to form S+(4S composite function). The relative intensities of the PFI-PI bands for S(3P0), S(3P1), and S(3P2) have been used to determine the branching ratios for these fine structure states, S(3P0):S(3P1):S(3P2)=1.00:1.54:3.55, produced by photodissociation of CS2 at 193.3 nm.  相似文献   

8.
The antitumor drug cisplatin forms two kinds of guanine-guanine cross-links with DNA: intrastrand, occurring mainly at GG sites, and interstrand, formed at GC sites. The former are generally more abundant than the latter, at least in experiments with linear duplex DNA. The formation of interstrand cross-links requires partial disruption of the Watson-Crick base pairing, and one could therefore expect the cross-linking reaction to be rather slow. In contrast with this expectation, kinetic measurements reported here indicate that interstrand cross-linking is as fast as intrastrand, or even faster. We have investigated the reactions between two hairpin-stabilized DNA duplexes, containing either a d(TGCA)(2) sequence (duplex TGCA) or a d(G(1)G(2)CA)-d(TG(3)CC) sequence (duplex GGCA), and the diaqua form of cisplatin, cis-[Pt(NH(3))(2)(H(2)O)(2)](2+), in an unbuffered solution kept at pH 4.5 +/- 0.1 and 20 degrees C. Using HPLC as the analytical method, we have determined the platination (first step) and chelation (second step) rate constants for these reaction systems. Duplex TGCA, in which the two guanines are quasi-equivalent, is found to be platinated very slowly (k=0.5 +/- 0.1M(-1)s(-1)) and to form the final interstrand cross-link very rapidly (k=13 +/- 3 x 10(-3) s(-11)). For GGCA, we find that G(1) is platinated rapidly (k=32 +/- 5M(-1)s(-1)) to form a long-lived monoadduct, which is only slowly chelated (k=0.039 +/- 0.001 x 10(-3) s(-1)) by G(2) (intrastrand), while G(2) is platinated one order of magnitude more slowly than G(1) (k=2.0 +/- 0.5M(-1)s(-1)) and chelated fairly rapidly both by G(1) (intrastrand: k=0.4 +/-0.1 x 10(-3) s(-1)) and G(3) (interstrand: k=0.2 +/- 0.1 x 10(-3) s(-1)); finally, G(3) is platinated at about the same rate as G(2) (k=2.4 +/- 0.5M(-1)s(-1)) and chelated very rapidly by G(2) (interstrand: k=10 +/- 4 x 10(-3) s(-1)). These results suggest that the low occurrence of interstrand cross-links in cisplatinated DNA is due to an extremely slow initial platination of guanines involved in d(GC)(2) sequences, rather than to a slow cross-linking reaction.  相似文献   

9.
We report high-level ab initio calculations and single-photon ionization mass spectrometry study of ionization of adenine (A), thymine (T), cytosine (C), and guanine (G). For thymine and adenine, only the lowest-energy tautomers were considered, whereas for cytosine and guanine we characterized the five lowest-energy tautomeric forms. The first adiabatic and several vertical ionization energies were computed using the equation-of-motion coupled-cluster method for ionization potentials with single and double substitutions. Equilibrium structures of the cationic ground states were characterized by DFT with the ωB97X-D functional. The ionization-induced geometry changes of the bases are consistent with the shapes of the corresponding molecular orbitals. For the lowest-energy tautomers, the magnitude of the structural relaxation decreases in the following series, G > C > A > T, the respective relaxation energies being 0.41, 0.32, 0.25, and 0.20 eV. The computed adiabatic ionization energies (8.13, 8.89, 8.51-8.67, and 7.75-7.87 eV for A, T, C, and G, respectively) agree well with the onsets of the photoionization efficiency (PIE) curves (8.20 ± 0.05, 8.95 ± 0.05, 8.60 ± 0.05, and 7.75 ± 0.05 eV). Vibrational progressions for the S(0)-D(0) vibronic bands computed within double-harmonic approximation with Duschinsky rotations are compared with previously reported experimental photoelectron spectra and differentiated PIE curves.  相似文献   

10.
Bisulfate water clusters, HSO(4)(-)(H(2)O)(n), have been studied both experimentally by a quadrupole time-of-flight mass spectrometer and by quantum chemical calculations. For the cluster distributions studied, there are some possible "magic number" peaks, although the increase in abundance compared to their neighbours is small. Experiments with size-selected clusters with n = 0-25, reacting with D(2)O at a center-of-mass energy of 0.1 eV, were performed, and it was observed that the rate of hydrogen/deuterium exchange is lower for the smallest clusters (n < 8) than for the larger (n > 11), with a transition taking place in the range n = 8-11. We propose that the protonic defect of the bisulfate ion remains rather stationary unless the degree of hydration reaches a given level. In addition, it was observed that H/D scrambling becomes close to statistically randomized for the larger clusters. Insight into this size dependency was obtained by B3LYP/6-311++G(2d,2p) calculations for HSO(4)(-)(H(2)O)(n) with n = 0-10. In agreement with experimental observations, these calculations suggest pronounced effectiveness of a 'see-saw mechanism' for pendular proton transfer with increasing HSO(4)(-)(H(2)O)(n) cluster size.  相似文献   

11.
A new class of abasic site-binding fluorescence ligands, Naph-NBD in which 7-nitrobenzo-2-oxa-1,3-diazole (NBD) is connected to 2-amino-7-methyl-1,8-naphthyridine (Naph) by a propylene linker, is presented for the ratiometric assay for SNPs typing. In solutions buffered to pH 7.0 (I = 0.11 M, at 5 degrees C), Naph-NBD is found to selectively recognize pyrimidine bases over purine bases opposite the abasic site in DNA duplexes (K11/M(-1): T, 8.1 x 10(6); C, 2.5 x 10(6): G, 0.33 x 10(6); A, 0.27 x 10(6)). The binding of Naph-NBD is accompanied by significant quenching of the fluorescence from the naphthyridine moiety (lambda max, 409 nm), while the emission from the NBD (lamda max, 544 nm) is relatively unaffected. Such a fluorescence response of Naph-NBD allows the emission ratio detection of pyrimidine/purine transversion.  相似文献   

12.
Adduct formation between cationic reagents and targets on DNA are facilitated by the ability of DNA to attract cations to its surface. The electrostatic interactions likely provide the basis for the documented preference exhibited by cisplatin and related compounds for nuclear DNA over other cellular constituents. As an extension of a previous communication, we here present an investigation illustrating how the rate of adduct formation with the naturally occurring base guanine (G-N7) can be modulated by i) bulk solvent conditions, ii) local nature and size of the surrounding DNA and, iii) increasing DNA concentration. A series of single-stranded DNA oligomers of the type d(TnGTm); n= 0, 2, 4, 6, 8, 10, 12, 14, 16 and m= 16 -n or n=m= 4, 6, 8, 12, 16, 24 were allowed to react with the active metabolite of a potential orally active platinumIV drug, cis-[PtCl(NH3))(c-C6H11NH2)(OH2)]+ in the presence of three different bulk cations; Na+, Mg2+, and Mn2+. For all positions along the oligomers, a change from monovalent bulk cations to divalent ones results in a decrease in reactivity, with Mn2+ as the more potent inhibitor as exemplified by the rate constants determined for interaction with d(T8GT8): 10(3) x k obs/s(-1)= 6.5 +/- 0.1 (Na+), 1.8 +/- 0.1 (Mg2+), 1.0 +/- 0.1 (Mn2+) at pH 4.2 and 25 degrees C. Further, the adduct formation rate was found to vary with the exact location of the binding site in the presence of both Na+ and Mg2+, giving rise to reactivity maxima at the middle position. Increasing the size of the DNA-fragments was found to increase the reactivity only up to a total length of ca. 20 bases. The influence from addition of further bases to the reacting DNA was found to be salt dependent. At [Na+]= 0.5 mM a retardation in reactivity was observed whereas [Na+] < or = 4.5 mM give rise to length independent kinetics. Finally, for the first time we have here been able to evaluate the influence from an increasing concentration of non-reactive DNA bases on the adduct formation process. The latter data were successfully fitted to an inhibition model suggesting that non-productive association of the platinum complex with sites distant from G-N7 competes with productive ones in the vicinity of the G-N7 target. Taken together, the kinetics support a reaction mechanism in which access to suitable association sites in the direct vicinity of the target site controls the rate of platination.  相似文献   

13.
Valence and dipole-bound negative ions of the nitroethane (NE) molecule and its clusters are studied using photoelectron spectroscopy (PES), Rydberg electron transfer (RET) techniques, and ab initio methods. Valence adiabatic electron affinities (EA(a)s) of NE, C(2)H(5)NO(2), and its clusters, (C(2)H(5)NO(2))(n), n=2-5, are estimated using vibrationally unresolved PES to be 0.3+/-0.2 eV (n=1), 0.9+/-0.2 eV (n=2), 1.5+/-0.2 eV (n=3), 1.9+/-0.2 eV (n=4), and 2.1+/-0.2 eV (n=5). These energies were then used to determine stepwise anion-neutral solvation energies and compared with previous literature values. Vertical detachment energies for (C(2)H(5)NO(2))(n)(-) were also measured to be 0.92+/-0.10 eV (n=1), 1.63+/-0.10 eV (n=2), 2.04+/-0.10 eV (n=3), and 2.3+/-0.1 eV (n=4). RET experiments show that Rydberg electrons can be attached to NE both as dipole-bound and valence bound anion states. The results are similar to those found for nitromethane (NM), where it was argued that the diffuse dipole state act as a "doorway state" to the more tightly bound valence anion. Using previous models for relating the maximum in the RET dependence of the Rydberg effective principle number n(max)(*), the dipole-bound electron affinity is predicted to be approximately 25 meV. However, a close examination of the RET cross section data for NE and a re-examination of such data for NM finds a much broader dependence on n(*) than is seen for RET in conventional dipole bound states and, more importantly, a pronounced [l] dependence is found in n(max)(*) (n(max)(*) increases with [l]). Ab initio calculations agree well with the experimental results apart from the vertical electron affinity value associated with the dipole bound state which is predicted to be 8 meV. Moreover, the calculations help to visualize the dramatic difference in the distributions of the excess electron for dipole-bound and valence states, and suggest that NE clusters form only anions where the excess electron localizes on a single monomer.  相似文献   

14.
Iodine Deficiency Disorders (IDD) is common in all populations. Iodine and other trace elements naturally occur in the soil but erosion leaches off these elements from the soil. This results in a continued loss of trace elements from the soil. In the present study, the levels of iodine, selenium, zinc and lead in the environment (measured in soil, bitter leaves (Vernonia amygdalina), cassava roots (mannihot utilissima, staple food in Nigeria), and drinking water) and urinary iodine from school children (n=200), pregnant women (n=60) and women of child bearing age (n=60) were determined for Nanka prone to soil erosion and Oba all in Anambra State, Nigeria (used as control) to assess their risk to IDD. The levels of selenium, zinc and lead were analysed using Atomic Absorption Spectrophotometry while the levels of iodine in the environment and urinary iodine were estimated using the method of Dunn et al.,(1993). In this study there was a positive correlation between iodine and the metals. The results show that the mean concentrations of total soil zinc (0.69 +/- 0.16 ppm); lead (0.40 +/- 0.12 ppm) values in Oba were significantly (p < 0.05) higher than values from Nanka (Zn = 0.33 +/- 0.10 ppm; Pb = 0.21 +/- 0.09 ppm). However, total soil values for selenium and iodine in soil were not significantly different in the two communities. Mean concentration of total vegetable zinc (0.63 +/- 0.14 ppm) value in Oba is significantly (p < 0.05) higher than the value from Nanka (Zn = 0.31 +/- 0.07 ppm). However, total vegetable values for I, Se and Pb were not significantly different in the two communities. Also, mean concentration of total cassava zinc (0.65 = 0.15 ppm) in Oba was significantly (p < 0.05) higher than Zn (0.44 +/- 0.1l ppm) from Nanka. However, values for Se, Pb, and I were not significantly different in the two communities. Mean concentration of total water iodine (105.25 +/- 10.44 microg/L) in Oba was significantly (p < 0.05) higher than the value from Nanka (I = 89.8 +/- 6.42 microg/L). However, total water values for Se, Zn, and Pb were not significantly different in the two communities. The mean urinary iodine concentration of 170.65 +/- 27.17 microg/L in school children from Oba was significantly higher (p < 0.05) than the mean concentration of 156.12 +/- 16.48 microg/L found in school children from Nanka. However, the mean urinary iodine concentration of all the women (pregnant and non-pregnant) were not significantly different in the two communities but they are below the recommended daily intake. The results show that people living in Nanka and Oba, could be at risk of IDD.  相似文献   

15.
Aqueous solutions of rhodium(III) tetra p-sulfonatophenyl porphyrin ((TSPP)Rh(III)) complexes react with dihydrogen to produce equilibrium distributions between six rhodium species including rhodium hydride, rhodium(I), and rhodium(II) dimer complexes. Equilibrium thermodynamic studies (298 K) for this system establish the quantitative relationships that define the distribution of species in aqueous solution as a function of the dihydrogen and hydrogen ion concentrations through direct measurement of five equilibrium constants along with dissociation energies of D(2)O and dihydrogen in water. The hydride complex ([(TSPP)Rh-D(D(2)O)](-4)) is a weak acid (K(a)(298 K) = (8.0 +/- 0.5) x 10(-8)). Equilibrium constants and free energy changes for a series of reactions that could not be directly determined including homolysis reactions of the Rh(II)-Rh(II) dimer with water (D(2)O) and dihydrogen (D(2)) are derived from the directly measured equilibria. The rhodium hydride (Rh-D)(aq) and rhodium hydroxide (Rh-OD)(aq) bond dissociation free energies for [(TSPP)Rh-D(D(2)O)](-4) and [(TSPP)Rh-OD(D(2)O)](-4) in water are nearly equal (Rh-D = 60 +/- 3 kcal mol(-1), Rh-OD = 62 +/- 3 kcal mol(-1)). Free energy changes in aqueous media are reported for reactions that substitute hydroxide (OD(-)) (-11.9 +/- 0.1 kcal mol(-1)), hydride (D(-)) (-54.9 kcal mol(-1)), and (TSPP)Rh(I): (-7.3 +/- 0.1 kcal mol(-1)) for a water in [(TSPP)Rh(III)(D(2)O)(2)](-3) and for the rhodium hydride [(TSPP)Rh-D(D(2)O)](-4) to dissociate to produce a proton (9.7 +/- 0.1 kcal mol(-1)), a hydrogen atom (approximately 60 +/- 3 kcal mol(-1)), and a hydride (D(-)) (54.9 kcal mol(-1)) in water.  相似文献   

16.
The water exchange on [Ru(CO)(H2O-eq)4(H2O-ax)](tos)2 (1), [Ru(CO)2(H2O-eq)2(H2O-ax)2](tos)2 (2), and [Ru(CO)3(H2O)3](ClO4)2 (3), the 17O exchange between the bulk water and the carbonyl oxygens have been studied by 17O NMR spectroscopy, and the X-ray crystallographic structures of 1 and 2 have been determined. The water exchange of equatorially and axially coordinated water molecules on 1 and 2 follow an Id mechanism and are characterized by keq298 (s-1), delta H++ (kJ/mol), and delta S++ (J/(mol K)) of (2.54 +/- 0.05) x 10(-6), 111.6 +/- 0.4, and 22.4 +/- 1 (1-eq); (3.54 +/- 0.02) x 10(-2) and 81 (1-ax); (1.58 +/- 0.14) x 10(-7), 120.3 +/- 2, and 28.4 +/- 4 (2-eq); and (4.53 +/- 0.08) x 10(-4), 97.9 +/- 1, and 19.3 +/- 3 (2-ax). The observed reactivities correlate with the strength of the Ru-OH2 bonds, as expressed by their length obtained by X-ray studies: 2.079 (1-eq), 2.140 (1-ax), 2.073 (2-eq), and 2.110 (2-ax) A. 3 is strongly acidic witha pKa of -0.14 at 262 K. Therefore, the acid-dependent water exchange can take place through 3 or Ru(CO)3(H2O)3OH+ with an estimated keq298 of 10(-4)/10(-3) s-1 and kOH262 of 0.053 +/- 0.006 s-1. The 17O exchange rate between the bulk water and the carbonyl oxygens increases from 1 to 2 to 3. For 1 an upper limit of 10(-8) s-1 was estimated. For 2, no acid dependence of kRuCO between 0.1 and 1 m Htos was observed. At 312.6 K, in 0.1 and 1 m Htos, kRuCO = (1.18 +/- 0.03) x 10(-4). For the tricarbonyl complex, the exchange can proceed through 3 or Ru(CO)3(H2O)2OH+ with kRuCO and kRuOHCO of, respectively, 0.003 +/- 0.002 and 0.024 +/- 0.003 s-1, with a ruthenacarboxylic acid intermediate.  相似文献   

17.
The stepwise binding energies (DeltaHdegree(n-1,n)) of 1-8 water molecules to benzene(.+) [Bz(.+)(H2O)n] were determined by equilibrium measurements using an ion mobility cell. The stepwise hydration energies, DeltaHdegree(n-1,n), are nearly constant at 8.5 +/- 1 kcal mol-1 from n = 1-6. Calculations show that in the n = 1-4 clusters, the benzene(.+) ion retains over 90% of the charge, and it is extremely solvated, that is, hydrogen bonded to an (H2O)n cluster. The binding energies and entropies are larger in the n = 7 and 8 clusters, suggesting cyclic or cage-like water structures. The concentration of the n = 3 cluster is always small, suggesting that deprotonation depletes this ion, consistent with the thermochemistry since associative deprotonation Bz(.+)(H2O)(n-1) + H2O-->C6H5. + (H2O)nH+ is thermoneutral or exothermic for n > or = 4. Associative intracluster proton transfer Bz(.+)(H2O)(n+1) + H2O-->C6H5.(H2O)nH+ would also be exothermic for n > or = 4, but lack of H/D exchange with D2O shows that the proton remains on C6H6(.+) in the observed Bz(.+)(H2O)n clusters. This suggests a barrier to intracluster proton transfer, and as a result, the [Bz(.+)(H2O)n]* activated complexes either undergo dissociative proton transfer, resulting in deprotonation and generation of (H2O)nH+, or become stabilized. The rate constant for the deprotonation reaction shows a uniquely large negative temperature coefficient of K = cT(-67+/-4) (or activation energy of -34+/- 1 kcal mol-1), caused by a multibody mechanism in which five or more components need to be assembled for the reaction.  相似文献   

18.
The photoionization and dissociative photoionization mechanism of 1,8-dihydroxyanthraquinone (1,8-DHAQ) have been investigated by infrared laser desorption/tunable synchrotron vacuum ultraviolet photoionization mass spectrometry (IR LD/VUV PIMS) technique and theoretical calculations. Consecutive losses of two carbon monoxides and elimination of hydroxyl group are found to be the major fragmentation channels in low photon energy range. Photoionization efficiency (PIE) spectrum of 1,8-DHAQ was measured in the photon energy range of 8.2-15.0 eV. Adiabatic ionization energy (IE) of 1,8-DAHQ (M) and appearance energies (AEs) of the major fragments (M-CO) (+), (M-C 2O 2) (+), and (M-OH) (+) are determined to be 8.54 +/- 0.05, 10.8 +/- 0.1, 11.0 +/- 0.1, and 13.1 +/- 0.1 eV, respectively, which are in fair agreement with calculated results. The B3LYP method with the 6-31+G(d) basis set was used to study fragmentation of 1,8-DHAQ. Theoretical calculations indicate that five lowest-energy isomers of 1,8-DHAQ cations can coexist by virtue of bond rotation and intramolecular proton transfer. A number of decarbonylation and dehydroxylation processes of 1,8-DHAQ cations are well established.  相似文献   

19.
Pyridine containing water clusters, H(+)(pyridine)(m)(H(2)O)(n), have been studied both experimentally by a quadrupole time-of-flight mass spectrometer and by quantum chemical calculations. In the experiments, H(+)(pyridine)(m)(H(2)O)(n) with m = 1-4 and n = 0-80 are observed. For the cluster distributions observed, there are no magic numbers, neither in the abundance spectra, nor in the evaporation spectra from size selected clusters. Experiments with size-selected clusters H(+)(pyridine)(m)(H(2)O)(n), with m = 0-3, reacting with D(2)O at a center-of-mass energy of 0.1 eV were also performed. The cross-sections for H/D isotope exchange depend mainly on the number of water molecules in the cluster and not on the number of pyridine molecules. Clusters having only one pyridine molecule undergo D(2)O/H(2)O ligand exchange, while H(+)(pyridine)(m)(H(2)O)(n), with m = 2, 3, exhibit significant H/D scrambling. These results are rationalized by quantum chemical calculations (B3LYP and MP2) for H(+)(pyridine)(1)(H(2)O)(n) and H(+)(pyridine)(2)(H(2)O)(n), with n = 1-6. In clusters containing one pyridine, the water molecules form an interconnected network of hydrogen bonds associated with the pyridinium ion via a single hydrogen bond. For clusters containing two pyridines, the two pyridine molecules are completely separated by the water molecules, with each pyridine being positioned diametrically opposite within the cluster. In agreement with experimental observations, these calculations suggest a "see-saw mechanism" for pendular proton transfer between the two pyridines in H(+)(pyridine)(2)(H(2)O)(n) clusters.  相似文献   

20.
Molecules of Li(n)X (n = 2, 3; X = Cl, Br, I) were examined with a magnetic sector mass spectrometer by surface ionization using a triple rhenium filament impregnated with fullerene (C60). The ionization energies obtained for Li(2)Cl, Li(2)Br and Li(2)I molecules are 3.8 +/- 0.1, 3.9 +/- 0.1 and 4.0 +/- 0.1 eV, respectively. The first ionization energy of Li(2)Cl is documented, while there are no literature data for the ionization energies of Li(2)Br and Li(2)I. The molecules of Li(3)Cl, Li(3)Br and Li(3)I were detected experimentally for the first time with ionization energies of 4.0 +/- 0.1, 4.1 +/- 0.1 and 4.1 +/- 0.1 eV, respectively. The ionization energies of Li(n)X (n = 2, 3; X = Cl, Br, I) are in correlation with the theoretical prediction of their hyperlithiated configurations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号