首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of (η5-C5H5)2Rh2(CO)η1-Ph2P(CH2)n PPh2(μ-η1:η1-CF3C2CF3) (I) with (η5-CH3C5H4)Mn(CO)2(thf) or Cr(CO)5(thf) gives the hetero-trinuclear products (η-C5H5)2Rh2(CO)(μ-CF3C2CF3)μ:η1:η1-Ph2P(CH2)nPPh2(η-CH3C5H3C4)Mn(CO2) (II, n = 1–4) and (η5-C5H5)2Rh2(CO)(μ-CF3C2CF3)μ:η1:η1-Ph2P(CH2)nPPh2Cr(CO)5 (IV, n = 1–4) in good yields. In these products, the configuration of the CO and bisphosphine units on the Rh-Rh bond is trans. Related reactions between (η5:η5-C5H4CH2C5H4)Rh2(CO)η1-Ph2P(CH2)nPPh2(μ-η1:η1- (V) and the same solvated manganese and chromium complexes give (η5:η5-C5H4CH2C5H4)Rh2(CO)(μ-CF3C2CF3)μ:η1:η1-Ph2P(CH2) (VI, n = 1, 2 or 4) and (η5:η5-C5H4CH2C5H4)Rh2(CO)(μ-CF3C2CF3)μ:η1:η1-Ph2P(CH2) (VIII). The complexes (VI) and (VIII) have a mutually cis arrangement of CO and the bisphosphine on the Rh-Rh bond. Attempts to induce the complexes (IV), (V), (VI), and (VIII) to form clusters by loss of CO and Rh-M bond formation were not successful. Treatment with trimethylamine oxide or sunlight irradiation generally resulted in loss of the hetero-metal and formation of the dirhodium phosphine oxide complexes (III, n = 2 or 4) and (VII, n = 2, 3).  相似文献   

2.
Treatment of the η1-acetylide complex [(η5-C5H5)(CO)(NO)W---CC---C(CH3)3]Li (4) with 1,2-diiodoethane in THF at −78 °C, followed by the addition of Li---CC---R [R=C(CH3)3, C6H5, Si(CH3)3, 6a6c] or n-C4H9Li and protonation with H2O, afforded the corresponding oxametallacyclopentadienyl complexes (η5-C5H5)W(I)(NO)[η2-O=C(CC---R)CH=CC(CH3)3] (7a7c), 8c and (η5-C5H5)W(I)(NO)[η2-O=C(n-C4H9)CH=CC(CH3)3] (9). The formation of these metallafuran derivatives is rationalized by the electrophilic attack of 1,2-diiodoethane onto the metal center of 4 to form first the neutral complex [(η5-C5H5)(I)(CO)(NO)W---CC---C(CH3)3] (5). Subsequent nucleophilic addition of Li---CC---R 6a6c or n-C4H9Li and a reductive elimination step followed by protonation leads to the products 7a7c and 9. One reaction intermediate could be trapped with CF3SO3CH3 and characterized by a crystal structure analysis. The identity of another intermediate was established by infrared spectroscopic data. The oxametallacyclopentadienyl complex 10 forms in the presence of excess 1,2-diiodoethane through an alternative pathway and crystallizes as a clathrate containing iodine.  相似文献   

3.
The reaction of Mo(η3-C3H4(CH3))(CH3CN)2(CO)2Cl with AgBF4 in THF yields the cationic complex [Mo(η3-C3H4(CH3))(CH3CN)2(CO)2(THF)]+[BF4], 1, whose X-ray structure has been determined. Oxo nucleophiles are capable of replacing the weakly bound THF molecule in 1 and under simultaneous loss of CH3CN the resulting complexes aggregate to oligonuclear compounds. Accordingly, the reactions with NaOMe and KOH yield [Na(THF)4]+[(η3-C3H4(CH3))(CO)2Mo(μ-OCH3)3Mo(CO)23-C3H4(CH3))], 2 and [K(18-crown-6)]+[[Mo(η3-C3H4(CH3))(CO)2]32-OH)33-OH)], 3, which were characterized by means of single crystal X-ray diffraction. Due to fluoride abstraction from BF4 the reaction of 1 with KOH also yields fluorinated derivatives of 3 but incorporation of fluorine in 3 can be avoided if AgO3SCF3 rather than AgBF4 is used to generate the cation of 1. For purposes of comparison the dinuclear complex [K(18-crown-6)]+[[Mo(η3-C3H4(CH3))(CO)2]22-F)3], 4, has been prepared, too, showing fluoride bridges and KF bonding. The chemical properties and the structures of these compounds in solution as well as their role as structural models for intermediates during molybdenum oxide catalysed propene oxidation are discussed.  相似文献   

4.
The Ni-methyl complex (η5-C5H5)Ni(CH3)(PPh3) (1) reacted with B(C6F5)3 to give an unstable contact ion-pair complex with a μ-methyl bridge between the Ni and B atoms. Formation of the B-CH3 bond was confirmed by the reaction of this complex with PPh3 to give [(η5-C5H5)Ni(PPh3)2][B(CH3)(C6F5)3] which was structurally characterized. Spontaneous decomposition of the contact ion-pair complex yielded (η5-C5H5)Ni(C6F5)(PPh3) which is very stable and does not show any reactions with norbornene with or without added B(C6F5)3. 19F NMR study showed that the polynorbornene obtained by the catalysis of 1/B(C6F5)3 system has the C6F5 end-group. A series of reactions, which includes CH3/C6F5 exchange between the Ni and B centers with concomitant dissociation of PPh3 to accept coordination of a norbornene monomer, is proposed as the route to active species that can initiate vinyl polymerization of norbornene.  相似文献   

5.
The complex (η5-C5H4CH3)Mn(NO)(PPh3)I has been prepared by the reaction of NaI with [(η5-C5H4CH3)Mn(NO)(CO)(PPh3)]+ and also by the reaction of [(η5-C5H4CH3)Mn(NO)(CO)2]+ with NaI followed by PPh3. This iodide compound reacts with NaCN to yield (η5-C5H4CH3)Mn(NO)(PPh3)CN which is ethylated by [(C2H5)3O]BF4 to yield [(η5-C5H4CH3)Mn(NO)(PPh3)(CNC2H5)]+. Both [(η5-C5H4CH3)Mn(NO)(CO)2]+ and [(η5-C5H4CH3)Mn(NO)(PPh3)(CO)]+ react with NaCN to yield [(η5-C5H4CH3)Mn(NO)(CN)2]?. This anion reacts with Ph3SnCl to yield cis-(η5-C5H4CH3)Mn(NO)(CN)2SnPh3 and with [(C2-H5)3O]BF4 to yield [(η5-C5H4CH3)Mn(NO)(CNC2H5)2]+. The reaction of (η5-C5-H4CH3)Mn(NO)(PPh3)I with AgBF4 in acetonitrile yields [(η5-C5H4CH3)Mn-(NO)(PPh3)(NCCH3)]+. The complex (η5-C5H4CH3)Mn(NO)(CO)I, produced in the reaction of [(η5-C5H4CH3)Mn(NO)(CO)2]+ with NaI, is not stable and decomposes to the dimeric complex (η5-C5H4CH3)2Mn2(NO)3I for which a reasonable structure is proposed. Similar dimers can be prepared from the other halide salts. The reaction of (η7-C7H7)Mo(CO)(PPh3)I with NaCN yields (η7-C7-H7)Mo(CO)(PPh3)CN which is ethylated by [(C2H5)3O]BF4 to yield [(η7-C7H7)-Mo(CO)(PPh3)(CNC2H5)]+. The interaction of this molybdenum halide complex with AgBF4 in acetonitrile and pyridine yields [(η7-C7H7)Mo(CO)(PPh3)-(NCCH3)]+ and [(η7-C7H7)Mo(CO)(PPh3)(NC5H5)]+, respectively. Both (η5-C5-H4CH3)Mn(NO)(PPh3)I and (η7-C7H7)Mo(CO)(PPh3)I are oxidized by NOPF6 to the respective 17-electron cations in acetonitrile at ?78°C but revert to the neutral halide complex at room temperature. This result is supported by electrochemical data.  相似文献   

6.
Reactions between [Ru(thf)(PPh3)2(η-C5H5)]+ and lithium acetylides have given further examples of substituted ethynylruthenium complexes that are useful precursors of allenylidene and cumulenylidene derivatives. From Li2C4, mono- and bi-nuclear ruthenium complexes were obtained: single-crystal X-ray studies have characterised two rotamers of {Ru(PPh3)2(η-C5H5)}2(μ-C4), which differ in the relative cis and trans orientations of the RuLn groups. Protonation of Ru(CCCCH)(PPh3)2(η-C5H5) afforded the butatrienylidene cation [Ru(C=C=C=CH2)(PPh3)2(η-C5H5)]+, which reacted readily with atmospheric moisture to give the acetylethynyl complex Ru{CCC(O)Me}(PPh3)2(η-C5H5), also fully characterised by an X-ray structural study.  相似文献   

7.
Treatment of [RuHCl(CS)(PPh3)3] with Hg(o-C6H4N=NC6H5)2 affords [RuCl(CS)(η2C,N-o-C6H4N=NC6H5)(PPh3)2] (1) in good yield, where the cyclometallated azobenzene ligand coordinates through an ortho-C and one azo-N to give a five-membered chelate ring. Reaction of 1 with AgNO3 followed by NaBr or NaI affords the chloride-exchanged products [RuX(CO)(η2C,N-o-C6H4N=NC6H5)(PPh3)2] (2, 3), whereas reaction of 1 with AgOC(O)Me or NaS2CNEt2·2H2O gives the halide mono-phosphine-substituted complexes [Ru(CS)(LL)(η2C,N-o-C6H4NNC6H5)(PPh3)] (4, 5). In the solid-state structures of 1 and 3 there are significant changes in the bond lengths for the cyclometallated azobenzene ligand are observed relative to free azobenzene. These are discussed, with the aid of spectroscopic and crystallographic data, in terms of a cis-push–pull effect.  相似文献   

8.
Reaction of [(η-C7H7)Mo(CO)3][PF6] and [(η-C5H5)Fe(CO)2CH3CN][PF6] with ditertiary phosphine ligands afforded products of three types; the monosubstituted complexes [(Ring)M(CO)2Ph2P(CH2)nPPh2][PF6] (Ring = η-C7H7, M = Mo, N = 1; Ring = η-C5H5, M = Fe, N = 1 and 2), the chelated complexes [(Ring)M(CO)Ph2P(CH2)nPPh2][PF6] (Ring = η-C7H7, M = Mo, N = 1 and 2; Ring = η-C5H5, M = Fe, N = 1 and 2), and the dinuclear complex [{(η-C7H7)Mo(CO)2}2 -μ- Ph2PCH2CH2PPh2][(PF6)2]. Spectroscopic properties, including 31P NMR, are reported.  相似文献   

9.
The reaction of the dilithium salt Li2[Me2Si(C5H4)(C5Me4)] (2) of Me2Si(C5H5)(C5HMe4) (1) with [MCl(C8H12)]2 (M=Rh, Ir) and [RhCl(CO)2]2 afforded homodinuclear metal complexes [{Me2Si(η5-C5H4)(η5-C5Me4)}{M(C8H12)}2] (M=Rh: 3; M=Ir: 4) and [{Me2Si(η5-C5H4)(η5-C5Me4)}Rh2(CO)2(μ-CO)] (5), respectively. The reaction of 2 with RhCl(CO)(PPh3)2 afforded a mononuclear metal complex [{Me2Si(C5HMe4)(η5-C5H4)}Rh(CO)PPh3] (6) leaving the C5HMe4 moiety intact. Taking advantage of the difference in reactivity of the two cyclopentadienyl moieties of 2, heterodinuclear complexes were prepared in one pot. Thus, the reaction of 2 with RhCl(CO)(PPh3)2, followed by the treatment with [MCl(C8H12)]2 (M=Rh, Ir) afforded a homodinuclear metal complex [Rh(CO)PPh3{(η5-C5H4)SiMe25-C5Me4)}Rh(C8H12)] (7) consisting of two rhodium centers with different ligands and a heterodinuclear metal complex [Rh(CO)(PPh3){(η5-C5H4)SiMe25-C5Me4)}Ir(C8H12)] (8). The successive treatment of 2 with [IrCl(C8H12)]2 and [RhCl(C8H12)]2 provided heterodinuclear metal complex [Ir(C8H12){(η5-C5H4)SiMe25-C5Me4)}Rh(C8H12)] (9). The reaction of 2 with CoCl(PPh3)3 and then with PhCCPh gave a mononuclear cobaltacyclopentadiene complex [{Me2Si(C5Me4H)(η5-C5H4)}Co(CPhCPhCPhCPh)(PPh3)] (10). However, successive treatment of 2 with CoCl(PPh3)3, PhCCPh and [MCl(C8H12)]2 in this order afforded heterodinuclear metal complexes [M(C8H12){(η5-C5H4)SiMe25-C5Me4)}Co(η4-C4Ph4)] (M=Rh: 11; M=Ir: 12) in which the cobalt center was connected to the C5Me4 moiety. Although the heating of 10 afforded a tetraphenylcyclobutadiene complex [{Me2Si(C5Me4H)(η5-C5H4)}Co(η4-C4Ph4)] (13), in which the cobalt center was connected to the C5H4 moiety, simple heating of the reaction mixture of 2, CoCl(PPh3)3 and PhCCPh resulted in the formation of a tetraphenylcyclobutadiene complex [{Me2Si(C5H5)(η5-C5Me4)}Co(η4-C4Ph4)] (14), in which the cobalt center was connected to the C5Me4 moiety. The mechanism of the cobalt transfer was suggested based on the electrophilicity of the formal trivalent cobaltacyclopentadiene moiety. In the presence of 1,5-cyclooctadiene, the reaction of 2 with CoCl(PPh3)3 provided a mononuclear cobalt cyclooctadiene complex [{Me2Si(C5Me4H)(η5-C5H4)}Co(C8H12)] (15). The reaction of 15 with n-BuLi followed by the treatment with [MCl(C8H12)]2 (M=Rh, Ir) afforded the heterodinuclear metal complexes of [Co(C8H12){(η5-C5H4)SiMe25-C5Me4)}M(C8H12)] (M=Rh: 16; M=Ir: 17). Treatment of 6 with Fe2(CO)9 at room temperature afforded a heterodinuclear metal complex [{Me2Si(C5HMe4)(η5-C5H4)}{Rh(PPh3)(μ-CO)2Fe(CO)3}] (18) in which the C5HMe4 moiety was kept intact. Treatment of dinuclear metal complex 5 with Fe2(CO)9 afforded a heterotrinuclear metal complex [{(η5-C5H4)SiMe25-C5Me4)}{Rh(CO)Rh(μ-CO)2Fe(CO)3}] (19) having a triangular metal framework. The crystal and molecular structures of 3, 11, 12, 18 and 19 have been determined by single-crystal X-ray diffraction analysis.  相似文献   

10.
Imines, Im, such as MeN=C(Ph)H (5), 2-methyl 4,5-dihydrothiazole (8a), 2-methyl 4,5-dihydrooxazole (8b) and MeN=C(OMe)Me (13) add to the α-carbon atom of the vinylidene ligand in [(CO)5Cr=C=CMe2] (4) to give isolable zwitterionic adducts, [(CO)5Cr–C(=CMe2)(Im+)]. The reaction of [(CO)5W=C=CPh2] (12) with 13 also yields an adduct, [(CO)5W–C(=CPh2){NMe=C(OMe)Me}+] (15), whereas from the corresponding reaction of 4 with xanthylideneimine, H–N=C(C6H4)2O (16), a carbene complex, [(CO)5Cr=C(i-Pr)–N=C(C6H4)2O] (17), is obtained. Complex 17 presumably is formed by initial addition of 16 to 4 and subsequently rapid rearrangement. In solution, the adduct [(CO)5Cr–C(=CMe2)(NMe=C(Ph)H)+] (6) slowly cyclizes to form the 2-azetidin-1-ylidene complex [(CO)5Cr= Me2] (7). In contrast, when solution of those zwitterions are heated that are formed by addition of 4,5-dihydrothiazole or 4,5-dihydrooxazole to 4, no cyclization is observed but rather the formation of 4,5-dihydrothiazole and 4,5-dihydrooxazole complexes, respectively. The structures of two adducts, [(CO)5Cr–C(=CMe2)(Im+)] (Im=MeN=C(Ph)H, 2-methyl 4,5-dihydrothiazole) and of the substitution product [(CO)5W(2-methyl 4,5-dihydrothiazole)] have been established by X-ray structural analyses.  相似文献   

11.
It is shown that electrode catalysis of substitution reactions can operate even for systems with rather slow chemical steps and, furthermore, for those which are electrochemically irreversible. A procedure is described for synthesis of Fe(CO)(PPh3)(η5-C5H5)COCH3 from Fe(CO)25-C5H5)CH3 and triphenylphosphine. A simplified mechanism for the catalytic chain, is given and discussed in terms of the structure of the reacting species.  相似文献   

12.
Reaction of [(η-C7H7)Mo(CO)3][PF6] with certain Group V donor ligands afforded monosubstituted complexes [(η-C7H7)Mo(CO)2L][PF6] (L = P(OPh)3, PPh3, PPh2Me, PPhMe2, AsPh3, SbPh3). These were reduced by NaBH4 to the corresponding cycloheptatriene complexes (1-6-η-C7H8)Mo(CO)2L. In addition, the preparation of alkylcycloheptatriene complexes (1-6-η-C7H7R)Mo(CO)2L (R = Me, L = P(OPh)3, PPh3, PPh2Me; R = t-Bu, L = PPh3) is described. Spectroscopic properties, including 13C NMR, are reported.  相似文献   

13.
Binuclear cycloheptatrienylchromium carbonyls of the type (C7H7)2Cr2(CO)n (n = 6, 5, 4, 3, 2, 1, 0) have been investigated by density functional theory. Energetically competitive structures with fully bonded heptahapto η7-C7H7 rings are not found for (C7H7)2Cr2(CO)n structures having two or more carbonyl groups. This result stands in contrast to the related (CnHn)2M2(CO)n (M = Mn, n = 6; M = Fe, n = 5; M = Co, n = 4) systems. Most of the predicted (C7H7)2Cr2(CO)n structures have bent trihapto or pentahapto C7H7 rings and CrCr distances in the range 2.4–2.5 Å suggesting formal triple bonds. In some cases rearrangement of the heptagonal C7H7 ring to a tridentate cyclopropyldivinyl or tridentate bis(carbene)alkyl ligand is observed. In addition structures with CO insertion into the C7H7–Cr bond are predicted for (C7H7)2Cr2(CO)n (n = 6, 4, 2). The global minima found for the (C7H7)2Cr2(CO)n derivatives for n = 6, 5, and 4 are (η5-C7H7)(OC)2CrCr(CO)41-C7H7), (η3-C7H7)(OC)2CrCr(CO)32,1- C7H7), and (η5-C7H7)2Cr2(CO)4, respectively. The global minima for (C7H7)2Cr2(CO)n (n = 3, 2) have rearranged C7H7 groups. Singlet and triplet structures with heptahapto η7-C7H7 rings are found for the dimetallocenes (η7-C7H7)2Cr2(CO) and (η7-C7H7)2Cr2, with the singlet structures being of much lower energies in both cases.  相似文献   

14.
Chloride abstraction from [{M(η3 --- C3H5)Cl}n] (M = Pt, n = 4 or M = Pd, n = 2) by (NBu4)2[cis-Pt(C6F5)2(CCSiMe3)2] (1) gives rise to novel homo- and hetero-dinuclear zwitterionic derivatives (NBu4) [{cis-Pt(C6F5)2(CCSiMe3)2}M(η3-C3H5)] (M = Pt 2; M = Pd 3) which are formed by a M(η3-allyl)+ unit attached to both alkynyl ligands of the {cis-Pt(C6F5)2(CCSiMe3)2}2− fragment. The structure of 3 has been established by X-ray diffraction.  相似文献   

15.
Reaction of [MX(CO)2(η7-C7H7)] (M=Mo, X=Br; M=W, X=I) with two equivalents of CNBut in toluene affords the trihapto-bonded cycloheptatrienyl complexes [MX(CO)2(CNBut)2(η3-C7H7)] (1, M=Mo, X=Br; 2, M=W, X=I). The X-ray crystal structure of 2 reveals a pseudo-octahedral molecular geometry with an asymmetric ligand arrangement at tungsten in which one CNBut is located trans to the η3-C7H7 ring. Treatment of 2 with tetracyanoethene results in 1,4-cycloaddition at the η3-C7H7 ring to give [WI(CO)2(CNBut)2{η3-C9H7(CN)4}], 3. The principal reaction type of the molybdenum complex 1 is loss of carbonyl and bromide ligands to afford substituted products [MoBr(CNBut)2(η7-C7H7)] 4 or [Mo(CO)(CNBut)2(η7-C7H7)]Br. Reaction of [MoBr(CO)2(η7-C7H7)] with one equivalent of CNBut in toluene at 60°C affords [MoBr(CO)(CNBut)(η7-C7H7)], 5, which is a precursor to [Mo(CO)(CNBut)(NCMe)(η7-C7H7)][BF4], 6, by reaction with Ag[BF4] in acetonitrile. In contrast with the parent dicarbonyl systems [MoX(CO)2(η7-C7H7)], complexes of the Mo(CO)(CNBut)(η7-C7H7) auxiliary, 5 and 6, do not afford observable η3-C7H7 products by ligand addition at the molybdenum centre.  相似文献   

16.
Nitrile-functionalized NCN-pincer complexes of type [MBr(NC-4-C6H2(CH2NMe2)2-2,6)] (6a, M = Pd; 6b, M = Pt) (NCN = [C6H2(CH2NMe2)2-2,6]) are accessible by the reaction of Br-1-NC-4-C6H2(CH2NMe2)2-2,6 (2b) with [Pd2(dba)3 · CHCl3] (5a) (dba = dibenzylidene acetone) and [Pt(tol-4)2(SEt2)]2 (5b) (tol = tolyl), respectively. Complex 6b could successfully be converted to the linear coordination polymer {[Pt(NC-4-C6H2(CH2NMe2)2-2,6)](ClO4)}n (8) upon its reaction with the organometallic heterobimetallic π-tweezer compound {[Ti](μ-σ,π-CCSiMe3)2}AgOClO3 (7) ([Ti] = (η5-C5H4SiMe3)2Ti).The structures of 6a (M = Pd) and 6b (M = Pt) in the solid state are reported. In both complexes the d8-configurated transition metal ions palladium(II) and platinum(II) possess a somewhat distorted square-planar coordination sphere. Coordination number 4 at the group-10 metal atoms M is reached by the coordination of two ortho-substituents Me2NCH2, the NCN ipso-carbon atom and the bromide ligand. The NC group is para-positioned with respect to M.  相似文献   

17.
A new metal-metal bonded binuclear iron system [Me2SiCH2CH2SiMe2][η5-C5H4Fe(CO)2]2 (2) has been prepared by treating two equivalents of NaCp with one equivalent of ClSi(Me)2CH2CH2SiClMe2 obtaining the intermediate (C5H5)Si(Me)2CH2CH2Si(Me)2(C5H5) which then is directly allowed to react with Fe(CO)5 given 2 in 30% yield. From this cyclopentadienyldisilyl linked system three new binuclear irom complexes are formed. Treatment of 2 with Na/Hg in THF produced the dianion [Me2SiCH2CH2SiMe2][η5-C5H4Fe(CO)2?]2 which is quenched with CH3I giving [Me2SiCH2CH2SiMe2][η5-C4H4Fe(CO)2CH3]2 (4) in 76% yield. Complex 2 is oxidized with 1.2 equivalent of I2 to give [Me2SiCH2CH2SiMe2][η5-C5H4Fe(CO)2I]2 (5) in 85% yield. Photolysis of 5 (1 equiv.) and PPh3 (3 equiv.) results in the formation of the bis-substituted compound [Me2SiCH2CH2SiMe2][η5-C5H4Fe(CO)(PPh3)I]2 (6). These four new binuclear iron complexes are characterized by 1H, 13C, and 31P NMR and IR spectroscopy.  相似文献   

18.
The intense purple colored bi- and trimetallic complexes {Ti}(CH2SiMe3)[CC(η6-C6H5)Cr(CO)3] (3) ({Ti}=(η5-C5H5)2Ti) and [Ti][CC(η6-C6H5)Cr(CO)3]2 (5) {[Ti]=(η5-C5H4SiMe3)2Ti}, in which next to a Ti(IV) center a Cr(0) atom is present, are accessible by the reaction of Li[CC(η6-C6H5)Cr(CO)3] (2) with {Ti}(CH2SiMe3)Cl (1) or [Ti]Cl2 (4) in a 1:1 or 2:1 molar ratio. The chemical and electrochemical properties of 3, 5, {Ti}(CH2SiMe3)(CCFc) [Fc=(η5-C5H5)Fe(η5-C5H4)] and [Ti][(CC)nMc][(CC)mM′c] [n, m=1, 2; n=m; nm; Mc=(η5-C5H5)Fe(η5-C5H4); M′c=(η5-C5H5)Ru(η5-C5H4); Mc=M′c; Mc≠M′c] will be comparatively discussed.  相似文献   

19.
In the title complexes, {[(η-C5H5)Fe(η-C5H4)(CO)](C22H21N4)Ni} (1) and {[(η-C5H5)Fe(η-C5H4)(CO)]2(C22H20N4)Ni} (2), one and two electroactive ferrocenes (Fc) were grafted onto the methine of the nickel complex Nitmtaa (H2tmtaa = 4,11-dihydro-5,7,12,14-tetramethyldibenzo[b,i][1,4,8,11]tetraazacyclotetradecine) through the carbonyl groups. The two new complexes were characterized by IR, UV, MS and NMR spectra as well as by DSC measurements. The crystal structure of 1 was determined. Ni coordinates to four nitrogen atoms of tmtaa, and it is almost in the same plane as the N4 plane. The mean Ni–N bond distance in the N4 plane is 1.866 Å. The non-planar, saddle-shaped conformation of H2tmtaa is almost retained in the nickel complex. The symmetry axis of ferrocene is almost parallel to the N4 plane in Nitmtaa. The dihedral angle between the N4 plane in Nitmtaa and the cyclopentadienyl ring in ferrocene is 98.5°. The electrochemistry of 1 and 2 was studied by cyclic voltammetry in CH2Cl2/1 × 10−1 M n-Bu4NClO4 using a glass carbon working electrode. Because of the electron transfer between the electroactive ferrocene and the completely conjugated system of Nitmtaa, the complexes show novel electrochemical properties and the ferrocenes in 1 and 2 act as electron acceptors.  相似文献   

20.
Reaction of cis-[Mo(NCMe)2(CO)2(η5-L)][BF4] (L=C5H5 or C5Me5) with 1-acetoxybuta-1,3-diene gives the cationic complexes [Mo{η4-syn-s-cis-CH2CHCHCH(OAc)}(CO)2(η5-L)][BF4], which, on reaction with aqueous NaHCO3/CH2Cl2, afford good yields of the anti-aldehyde substituted complexes [Mo{η3-exo-anti-CH2CHCH(CHO)}(CO)2(η5-L)] 2 (L=C5Me5), 4 (L=C5H5)]. The corresponding η5-indenyl substituted complex 5 was prepared by protonation (HBF4·OEt2) of [Mo(η3-C3H5)(CO)2(η5-C9H7)] followed by addition of CH2=CHCH=CH(OAc) and hydrolysis (aq. NaHCO3/CH2Cl2). An X-ray crystallographic study of complex 2 confirmed the structure and showed that there is a contribution from a zwitterionic form involving donation of electron density from the molybdenum to the aldehyde carbonyl group. Treatment of 2 and 4, in methanol solution, with NaBH4 afforded the alcohols [Mo{η3-exo-anti-CH2CHCHCH2(OH)}(CO)2(η5-L)] [6 (L=C5H5), 8 (L=C5Me5)]; however, prolonged (30 h) reaction with NaBH4/MeOH surprisingly gave good yields of the methoxy-substituted complexes [Mo{η3-exo-anti-CH2CHCHCH2(OMe)}(CO)2(η5-L)] [7 (L=C5H5), 9 (L=C5Me5)], the structure of 7 being confirmed by single crystal X-ray crystallography. This methoxylation reaction can be explained by coordination of the hydroxyl group present in 6 and 8 onto B2H6 to form the potential leaving group HOBH3, which on ionisation affords [Mo(η4-exo-buta-1-3-diene)(CO)2(η5-L)]+ which is captured by reaction with OMe. Complex 8 is also formed in good yield on reaction of 2 with HBF4·OEt2 followed by treatment of the resulting cation [Mo{η4-exo-s-cis-syn-CH2CHCHCH(OH)}(CO)2(η5-C5Me5)][BF4] with Na[BH3CN]. Reaction of 4 with the Grignard reagents MeMgI, EtMgBr or PhMgCl afforded moderate yields of the alcohols [Mo{η3-exo-anti-CH2CHCHCH(OH)R}(CO)2(η5-C5H5)] [11 (R=Me), 12 (R=Et), 13 (R=Ph)]. Similarly, treatment of 2 with MeLi gave the corresponding alcohol 14. An attempt to carry out the Oppenauer oxidation [Al(OPr′)3/Me2CO] of 11 resulted in an elimination reaction and the formation of the η3-s-pentadienyl complex [Mo{η3-exo-anti-CH2CHCH(CHCH2)}(CO)2(η5-C5H5)], which was structurally identified by X-ray crystallography. Interestingly, oxidation of 6 with [Bu4nN][RuO4]/morpholine-N-oxide affords the aldehyde complex, 4 in good yield. Finally, reaction of 11 with [NO][BF4] followed by addition of Na2CO3 affords the fur-3-ene complex [Mo{η2-
(H)Me}(CO)(NO)(η5-C5H5)].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号