首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
??In this paper, we consider the optimal dividend problem in the spectrally positive L\'{e}vy model with regime switching. By an auxiliary optimal problem, the principle of dynamic programming and the fluctuation theory of L\'{e}vy processes, we show that optimal strategy is a modulated barrier strategy. The value function and the optimal dividend barrier are obtained by iteration.  相似文献   

2.
We study the optimal dividend problem in the dual model where dividend payments can only be made at the jump times of an independent Poisson process. In this context, Avanzi et al. (2014) solved the case with i.i.d. hyperexponential jumps; they showed the optimality of a (periodic) barrier strategy where dividends are paid at dividend-decision times if and only if the surplus is above some level. In this paper, we generalize the results for a general spectrally positive Lévy process with additional terminal payoff/penalty at ruin, and also solve the case with classical bail-outs so that the surplus is restricted to be nonnegative. The optimal strategies as well as the value functions are concisely written in terms of the scale function. Numerical results are also given.  相似文献   

3.
The optimal dividend problem proposed in de Finetti [1] is to find the dividend-payment strategy that maximizes the expected discounted value of dividends which are paid to the shareholders until the company is ruined. Avram et al. [9] studied the case when the risk process is modelled by a general spectrally negative Lévy process and Loeffen [10] gave sufficient conditions under which the optimal strategy is of the barrier type. Recently Kyprianou et al. [11] strengthened the result of Loeffen [10] which established a larger class of Lévy processes for which the barrier strategy is optimal among all admissible ones. In this paper we use an analytical argument to re-investigate the optimality of barrier dividend strategies considered in the three recent papers.  相似文献   

4.
We consider the optimal dividend problem for the insurance risk process in a general Lévy process setting. The objective is to find a strategy which maximizes the expected total discounted dividends until the time of ruin. We give sufficient conditions under which the optimal strategy is of barrier type. In particular, we show that if the Lévy density is a completely monotone function, then the optimal dividend strategy is a barrier strategy. This approach was inspired by the work of Avram et al. [F. Avram, Z. Palmowski, M.R. Pistorius, On the optimal dividend problem for a spectrally negative Lévy process, The Annals of Applied Probability 17 (2007) 156–180], Loeffen [R. Loeffen, On optimality of the barrier strategy in De Finetti’s dividend problem for spectrally negative Lévy processes, The Annals of Applied Probability 18 (2008) 1669–1680] and Kyprianou et al. [A.E. Kyprianou, V. Rivero, R. Song, Convexity and smoothness of scale functions with applications to De Finetti’s control problem, Journal of Theoretical Probability 23 (2010) 547–564] in which the same problem was considered under the spectrally negative Lévy processes setting.  相似文献   

5.
In this paper, we study the optimal dividend and capital injection problem with the penalty payment at ruin. The dividend strategy is assumed to be restricted to a small class of absolutely continuous strategies with bounded dividend density. By considering the surplus process killed at the time of ruin, we transform the problem to a combined stochastic and impulse control one up to ruin with a free boundary at zero. We illustrate the theoretical verifications for different types of capital injection strategies comparing to the conventional results given in the literature, where the capital injections are made before the time of ruin. Under the assumption of restricted dividend density, the value function is proved as the unique increasing, bounded, Lipschitz continuous and upper semi-continuous at zero viscosity solution to the corresponding quasi-variational Hamilton–Jacobi–Bellman (HJB) equation. The uniqueness of such class of viscosity solutions is shown by considering its boundary condition at infinity. The optimality of a specific band-type strategy is proved for the case when the premium rate is (i) greater than or (ii) less than the ceiling dividend rate respectively. Some numerical examples are presented under the exponential and gamma claim size assumptions.  相似文献   

6.
In this paper, we consider a general Lévy risk model with two-sided jumps and a constant dividend barrier. We connect the ruin problem of the ex-dividend risk process with the first passage problem of the Lévy process reflected at its running maximum. We prove that if the positive jumps of the risk model form a compound Poisson process and the remaining part is a spectrally negative Lévy process with unbounded variation, the Laplace transform (as a function of the initial surplus) of the upward entrance time of the reflected (at the running infimum) Lévy process exhibits the smooth pasting property at the reflecting barrier. When the surplus process is described by a double exponential jump diffusion in the absence of dividend payment, we derive some explicit expressions for the Laplace transform of the ruin time, the distribution of the deficit at ruin, and the total expected discounted dividends. Numerical experiments concerning the optimal barrier strategy are performed and new empirical findings are presented.  相似文献   

7.
Motivated by economic and empirical arguments, we consider a company whose cash surplus is affected by macroeconomic conditions. Specifically, we model the cash surplus as a Brownian motion with drift and volatility modulated by an observable continuous-time Markov chain that represents the regime of the economy. The objective of the management is to select the dividend policy that maximizes the expected total discounted dividend payments to be received by the shareholders. We study two different cases: bounded dividend rates and unbounded dividend rates. These cases generate, respectively, problems of classical stochastic control with regime switching and singular stochastic control with regime switching. We solve these problems, and obtain the first analytical solutions for the optimal dividend policy in the presence of business cycles. We prove that the optimal dividend policy depends strongly on macroeconomic conditions.  相似文献   

8.
This work develops asymptotically optimal dividend policies to maximize the expected present value of dividends until ruin.Compound Poisson processes with regime switching are used to model the surplus and the switching(a continuous-time controlled Markov chain) represents random environment and other economic conditions.Assuming the switching to be fast varying together with suitable conditions,it is shown that the system has a limit that is an average with respect to the invariant measure of a related Markov chain.Under simple conditions,the optimal policy of the limit dividend strategy is a threshold policy.Using the optimal policy of the limit system as a guide,feedback control for the original surplus is then developed.It is demonstrated that the constructed dividend policy is asymptotically optimal.  相似文献   

9.
We consider the problem of finding the optimal dividend policy for a company whose cash reserve follows a Brownian motion with drift and volatility modulated by an observable finite-state continuous-time Markov chain. The Markov chain represents the regime of the economy. We allow fixed costs and taxes associated with the dividend payments. This optimization problem generates a stochastic impulse control problem with regime switching. We solve this problem and obtain the first analytical solutions for the optimal dividend policy when there are simultaneously fixed costs, taxes and business cycles. Our results show that the optimal dividend policy depends strongly on the regime of the economy, on fixed costs and on taxes.  相似文献   

10.
We consider the optimal capital injection and dividend control problem for a class of growth restricted diffusions with the possibility of bankruptcy. The surplus process of a company is modeled by a diffusion process with return and volatility being functions of the surplus process. The company can control the dividend payments and capital injections with the goal of maximizing the expectation of the total discounted dividends minus the total cost of capital injections up to the time of bankruptcy. We distinguish three cases and provide optimality results for each case.  相似文献   

11.
研究保费和索赔到达率与余额相依的最优有界分红问题,目标是最大化破产前的累积期望折现分红.首先,给出一个策略是平稳马氏策略的充分必要条件,运用测度值生成元的理论得到测度值动态规划方程(DPE),并且给出了验证定理的证明.最后,讨论了测度值DPE和相应拟变分不等式(QVI)之间的关系,并且证明了最优分红策略为具有波段结构的...  相似文献   

12.
Consider the optimal dividend problem for an insurance company whose uncontrolled surplus precess evolves as a spectrally negative Levy process. We assume that dividends are paid to the shareholders according to admissible strategies whose dividend rate is bounded by a constant. The objective is to find a dividend policy so as to maximize the expected discounted value of dividends which are paid to the shareholders until the company is ruined. In this paper, we show that a threshold strategy (also called refraction strategy) forms an optimal strategy under the condition that the Levy measure has a completely monotone density.  相似文献   

13.
This paper studies the optimal dividend problem with capital injection under the constraint that the cumulative dividend strategy is absolutely continuous. We consider an open problem of the general spectrally negative case and derive the optimal solution explicitly using the fluctuation identities of the refracted–reflected Lévy process. The optimal strategy as well as the value function is concisely written in terms of the scale function. Numerical results are also provided to confirm the analytical conclusions.  相似文献   

14.
We study the optimal reinsurance policy and dividend distribution of an insurance company under excess of loss reinsurance. The objective of the insurer is to maximize the expected discounted dividends. We suppose that in the absence of dividend distribution, the reserve process of the insurance company follows a compound Poisson process. We first prove existence and uniqueness results for this optimization problem by using singular stochastic control methods and the theory of viscosity solutions. We then compute the optimal strategy of reinsurance, the optimal dividend strategy and the value function by solving the associated integro-differential Hamilton–Jacobi–Bellman Variational Inequality numerically.  相似文献   

15.
In this paper, we consider dividend problem for an insurance company whose risk evolves as a spectrally negative Lévy process (in the absence of dividend payments) when a Parisian delay is applied. An objective function is given by the cumulative discounted dividends received until the moment of ruin, when a so-called barrier strategy is applied. Additionally, we consider two possibilities of a delay. In the first scenario, ruin happens when the surplus process stays below zero longer than a fixed amount of time. In the second case, there is a time lag between the decision of paying dividends and its implementation.  相似文献   

16.
We consider the threshold dividend strategy where a company’s surplus process is described by the dual Lévy risk model. Namely, the company chooses to pay dividends at a constant rate only when the surplus is above some nonnegative threshold. Classically, such a company is referred to be ruined immediately when the surplus level becomes negative. Recently, researchers investigate the Parisian ruin problem where the company is allowed to operate under negative surplus for a predetermined period known as the Parisian delay. With the help of the fluctuation identities of spectrally negative Lévy processes, we obtain an explicit expression of the expected discounted dividends until Parisian ruin in terms of the relevant scale functions and certain probabilities that need to be evaluated for each specific Lévy process. The optimal threshold level under such a threshold dividend strategy is deduced. Applications and numerical examples are given to illustrate the theoretical results and examine how the expected discounted aggregate dividends and the optimal threshold level change in response to different Parisian delays.  相似文献   

17.
We consider the optimal proportional reinsurance and dividend strategy. The surplus process is modeled by the classical compound Poisson risk model with regime switching. Considering a class of utility functions, the object of the insurer is to select the reinsurance and dividend strategy that maximizes the expected total discounted utility of the shareholders until ruin. By adapting the techniques and methods of stochastic control, we study the quasi-variational inequality for this classical and impulse control problem and establish a verification theorem. We show that the optimal value function is characterized as the unique viscosity solution of the corresponding quasi-variational inequality.  相似文献   

18.
In this paper, we consider the optimal dividend problem for the compound Poisson risk model. We assume that dividends are paid to the shareholders according to an admissible strategy with dividend rate bounded by a constant. Our objective is to find a dividend policy so as to maximize the expected discounted value of dividends until ruin. We give sufficient conditions under which the optimal strategy is of threshold type.  相似文献   

19.
In this article, we consider the optimal reinsurance and dividend strategy for an insurer. We model the surplus process of the insurer by the classical compound Poisson risk model modulated by an observable continuous-time Markov chain. The object of the insurer is to select the reinsurance and dividend strategy that maximizes the expected total discounted dividend payments until ruin. We give the definition of viscosity solution in the presence of regime switching. The optimal value function is characterized as the unique viscosity solution of the associated Hamilton–Jacobi–Bellman equation and a verification theorem is also obtained.  相似文献   

20.
We consider a classical risk model with dividend payments and capital injections. Thereby, the surplus has to stay positive. Like in the classical de Finetti problem, we want to maximise the discounted dividend payments minus the penalised discounted capital injections. We derive the Hamilton-Jacobi-Bellman equation for the problem and show that the optimal strategy is a barrier strategy. We explicitly characterise when the optimal barrier is at 0 and find the solution for exponentially distributed claim sizes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号