首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mg/Al mixed oxides with molar ratios of 2-6 of Mg to Al used as supports for platinum catalysts were obtained by the thermal decomposition method. The effect of the composition of the mixed oxides on the physicochemical properties was studied by TPD, nitrogen sorption, XRD and TG-DTA characterization methods. The synthesis of o-phenylphenol (OPP) from a dimer (obtained from cyclohexanone condensation) was investigated over Pt/CHT catalysts and compared with those over Pt/MgO and Pt/Al2O3 catalysts. These catalysts show a high activity and selectivity for OPP, with a conversion reaching 93.8% and a selectivity reaching 87.9% in some experiments. For Pt/CHTx catalysts, the calcined hydrotalcites exhibited strong base sites, which were necessary to catalyze the synthesis of OPP.  相似文献   

2.
The Cu-containing catalysts were synthesized via thermal treatment of the Cu Mg Al hydrotalcite with a fixed metal ratio at various calcination temperatures. The bi-functional solid base catalysts exhibited high activity for the hydrogenolysis of highly concentrated cellulose. The hydrotalcite precursors and the calcined samples were characterized by means of X-ray diffraction(XRD), thermogravimetric analysis(TG),N_2 adsorption–desorption, temperature-programmed reduction of H_2(H_2-TPR), temperature-programmed desorption of CO_2(CO_2-TPD) and dissociative N_2O adsorption. The characterization results indicated that the transformation of structure was caused by the increasing calcination temperature, which could further influence the numbers of the base sites and metal active sites in the CuMgAl catalysts. The hydrogenolysis of cellulose was systematically investigated over different catalytic systems. With the CuMgAl-600 catalyst, complete conversion of cellulose can be accomplished and the highest yield obtained is 81.4%,with total polyols yields obtained are 59.1% for the C2–C3 polyols. In addition, either the in-situ hydroxyl or the hydrated OH-due to the "memory effect" of hydrotalcite as Br?nsted bases, was proved to exhibit promotional effect on the hydrogenolysis of cellulose, which could effectively substitute the effect of ionizing alkali. Furthermore, it is noteworthy that the conversion of cellulose could maintain up to 90.2%with unobvious formation of coke-like precipitates when the cellulose concentration reached a high level of 18%.  相似文献   

3.
Five hydrotalcites with Mg/Al molar ratio range of 3-15 were prepared. The structure and basicity of Mg-Al mixed oxides (Mg(Al)O) transformed from hydrotalcites were investigated by TPD, XPS, XRD, FT-IR and NMR techniques. The results of elemental analysis and XPS indicate that Al is enriched in the surface regions of Mg(Al)0, and its amount increases with the Mg/Al molar ratio and the calcination temperature. 27Al-MAS-NMR results show that Al exists in two chemical environments: tetrahedral aluminium (Al(t)) and octahedral aluminium (Al(o)) in Mg(Al)O. The amount of Al(t) increases with the Mg/Al molar ratio and the calcination temperature. It is assumed that Al(t) may be mainly from the surface Al. Temperature-programmed desorption (TPD) of CO2 shows that the number of basic sites of Mg(Al)O samples increases with the Mg/Al molar ratio, and the maximum number of basic sites is obtained for hydrotalcite calcined at 773 K. Infrared spectra of adsorbed CO2 and B(OCH3)3 reveal that there are two kinds of  相似文献   

4.
Pd/γ-Al_2O_3–TiO_2 catalysts containing various compositions of titania and alumina were prepared by sol–gel and wet-impregnation methods in attempt to study the particle size, nature of phases, morphology and structure of the composite samples. The ethanol oxidation experiments, N_2 adsorption–desorption,FTIR, XRD and XPS were conducted, and the effects of Al_2O_3 content on the surface area, phase transformation and structural properties of TiO_2 were investigated. The optimal value of ethanol conversion appeared on Pd/Al(0.05)–Ti and Pd/Al(0.90)–Ti catalysts irrespective of the ethanol oxidation temperature, and we call this as a double peaks phenomenon of catalytic activity. The XRD results reveal that the phase composition and crystallite size of the mixed oxides depend on Al_2O_3/TiO_2 ratio and calcination temperature. Al_2O_3 can effectively prevent the agglomeration of TiO_2 and this can be ascribed to the formation of Al–O–Ti chemical bonds in Al_2O_3–TiO_2 crystals. Binding energy and Pd surface concentration of the catalysts were modified apparently, which may also lead to catalyst activity changes.  相似文献   

5.
Mixed metal oxides in the nanoscale are of great interest for many aspects of energy related research topics as water splitting, fuel cells and battery technology. The development of scalable, cost-efficient and robust synthetic routes toward well-defined solid state structures is a major objective in this field.While monometallic oxides have been studied in much detail, reliable synthetic recipes targeting specific crystal structures of mixed metal oxide nanoparticles are largely missing. Yet, in order to meet the requirements for a broad range of technical implementation it is necessary to tailor the properties of mixed metal oxides to the particular purpose. Here, we present a study on the impact of the nature of the gas environment on the resulting crystal structure during a post-synthesis thermal heat treatment of manganese–cobalt oxide nanoparticles. We monitor the evolution of the crystal phase structure as the gas atmosphere is altered from pure nitrogen to synthetic air and pure oxygen. The particle size and homogeneity of the resulting nanoparticles increase with oxygen content, while the crystal structure gradually changes from rocksalt-like to pure spinel. We find the composition of the particles to be independent of the gas atmosphere. The manganese–cobalt oxide nanoparticles exhibited promising electrocatalytic activity regarding oxygen evolution in alkaline electrolyte. These findings offer new synthesis pathways for the direct preparation of versatile utilizable mixed metal oxides.  相似文献   

6.
Trace amounts of noble metal-doped Ni/Mg(Al)O catalysts were prepared starting from Mg-Al hydrotalcites (HTs) and tested in daily start-up and shut-down (DSS) operation of steam reforming (SR) of methane or partial oxidation (PO) of propane. Although Ni/Mg(Al)O catalysts prepared from Mg(Ni)-Al HT exhibited high and stable activity in stationary SR, PO and dry reforming of methane and propane, the Ni/Mg(Al)O catalysts were drastically deactivated due to Ni oxidation by steam as purge gas when they were applied in DSS SR ofmethane. Such deactivation was effectively suppressed by doping trace amounts of noble metal on the catalysts by using a “memory effect” of HTs. Moreover, the noble metal-doped Ni/Mg(Al)O catalysts exhibited “intelligent” catalytic behaviors, i.e., self-activation and self-regenerative activity, leading to high and sustainable activity during DSS operation. Pt was the most effective among noble metals tested. The self-activation occurred by the reduction of Ni2+ in Mg(Ni,Al)O periclase to Ni0 assisted by hydrogen spillover from Pt (or Pt-Ni alloy). The self-regenerative activity was accomplished by self-redispersion of active Ni0 particles due to a reversible reductionoxidation movement of Ni between the outside and the inside of the Mg(Al)O periclase crystal; surface Ni0 was oxidized to Ni2+ by steam and incorporated into Mg(Ni2+,Al)O periclase, whereas the Ni2+ in the periclase was reduced to Ni0 by the hydrogen spillover and appeared as the fine Ni0 particles on the catalyst surface. Further a “green” preparation of the Pt/Ni/[Mg3.5Al]O catalysts was accomplished starting from commercial Mg3.5-Al HT by calcination, followed by sequential impregnation of Ni and Pt.  相似文献   

7.
In this paper, the effect of acidity of zeolites with FER framework was studied in the methanol dehydration to dimethyl ether reaction, by comparing catalysts with different Si/Al ratios(namely 8, 30 and60). The aim of this work was to investigate how the acid sites concentration, strength, distribution and typology(Br?nsted and Lewis) affect methanol conversion, DME selectivity and coke formation. It was found that the aluminium content affects slightly acid sites strength whilst a relevant effect on acid sites concentration and distribution(Br?nsted/Lewis) was observed as 24% of Lewis sites were found on Alrichest samples, whilst less than 10% of Lewis acid sites were observed on FER at higher Si/Al ratio. All the investigated catalyst samples showed a selectivity toward DME always greater than 0.9 and samples with the lowest Si/Al ratio exhibit the best performances in terms of methanol conversion, approaching the theoretical equilibrium value(around 0.85) at temperatures below 200 °C. Turnover-frequency analysis suggests that this result seems to be related not only to the higher amount of acid sites but also that the presence of Lewis acid sites may play a significant role in converting methanol. On the other hand, the presence of Lewis acid sites, combined with a high acidity, promote the formation of by-products(mainly methane) and coke deposition during the reaction. As final evidence, all the investigated catalysts exhibit very high resistance to deactivation by coke deposition, over 60 h continuous test, and a GC–MS analysis of the coke deposited on the catalyst surface reveals tetra-methyl benzene as main component.  相似文献   

8.
A facile route for the synthesis of dimethyl adipate (DAP) from cyclopentanone and dimethyl carbonate (DMC) in the presence of solid base catalysts has been developed.It was found that the intermediate carbomethoxycyclopentanone (CMCP) was produced from cyclopentanone with DMC in the first step,and then CMCP was further converted to DAP by reacting with a methoxide group.The role of the basic catalysts can be mainly ascribed to the activation of cyclopentanone via the abstraction of a proton in the α-position by base sites,and solid bases with moderate strength,such as MgO,favor the formation of DAP.  相似文献   

9.
A free standing film of polyaniline as large as 18 cm×18cm×0.002 cm can be obtained by evaporation of a solution of the chemically synthesized base in NMP. Its structure was examined by the elemental analysis, IR, U.V.-visible spectra, XPS, DSC, SEM and X-ray scattering and its conducting behavior as well as electrochemical properties were studied. Results show that the composition, structure of main chain, physical properties of the free standing film of polyanilme is similar to that of the powder. However, some differences in its electronic structure, conductivity at room temperature and potential of redox couple between the flee standing film and powder are observed, which may be due to cross-linking of the film of polyaniline.  相似文献   

10.
Co–Mo catalysts applied on the hydrodesulfurization(HDS) for FCC gasoline were prepared with Zn–Al layered double hydroxides(LDHs) to improve their performances,and the effects of pore structures and acidity on HDS performances were studied in detail. A series of Zn–Al/LDHs samples with different pore structures and acidities are synthesized on the bases of co-precipitation of OH-,CO2-,Al3+,and Zn2+. The neutralization p H is a main factor to affect the pore structures and acidity of Zn–Al/LDHs,and a series of Zn–Al/LDHs with different pore structures and acidities are obtained. Based on the representative samples with different specific surface areas(SBET) and acidities,three Co Mo/LDHs catalysts were prepared,and their HDS performances were compared with traditional Co Mo/Al2O3 catalysts. The results indicated that catalysts prepared with high SBETpossessed high HDS activity,and Br?nsted acid sites could reduce the thiol content in the product to some extent. All the three catalysts prepared with LDHs displayed little lower HDS activity but higher selectivity than Co Mo/Al2O3,and could restrain the reactions of re-combination between olefin and H2 S which could be due to the existence of Br?nsted acid sites.  相似文献   

11.
1 INTRODUCTION The Schiff base ligands have been used to provide a stereochemically rigid ligand framework in homogenous precatalysts of some metals, such as salen Cr catalysts in asymmetric ring-opening re- action of epoxide[1] and salen Al in ring-opening polymerization of lactide and related cyclic esters[2]. Recently, it was reported that the bidentate Schiff base complexes of early and late transition metals can be served as promising alternatives to metal- locene catalysts for th…  相似文献   

12.
Five Co-B amorphous alloy catalysts were prepared by chemical reduction in different media, including pure water and pure ethanol as well as the mixture of ethanol and water with variable ethanol content, Their catalytic properties were evaluated using liquid phase furfural hydrogenation to furfuryl alcohol as the probe reaction. It was found that the reaction media had no significant influence on either the amorphous structure of the Co-B catalyst or the electronic interaction between metallic Co and alloying B. This could successfully account for the fact that all the as-prepared Co-B catalysts exhibited almost the same selectivity to furfuryl alcohol and the same activity per surface area ( Rs ), which could be considered as the intrinsic activity, since the nature of active sites remained unchanged. However, the activity per gram of Co ( R^mH ) of the as-prepared Co-B catalysts increased rapidly when the ethanol content in the water-ethanol mixture used as the reaction medium for catalyst preparation increased. This could be attributed to the rapid increase in the surface area possibly owing to the presence of more oxidized boron species which could serve as a support for dispersing the Co-B amorphous alloy particles.  相似文献   

13.
The production of higher terminal alcohols through CO hydrogenation according to the Fischer–Tropsch(F–T) process has been a topic of interest since the Institut Fran?ais du Pétrole(IFP) demonstrated shortchain C_1–C_6mixed alcohols production over cobalt–copper based catalysts. A number of catalyst formulations were screened for their suitability at that time. In particular, the addition of Cr, Zn, Al, Mn and V to Co Cu was investigated. In a number of patents, it was shown that catalyst preparation is crucial in these catalyst formulations and that high alcohols selectivity can only be achieved by carefully respecting the procedures and recipes. This short critical review highlights recent developments in Co Cu-based catalysts for higher terminal alcohols synthesis via F–T synthesis. Special attention will be given to catalyst preparation which according to developments in our group is based on oxalate precipitation. This way we show that the close association of Co and Cu on the one hand and promoter/dispersant on the other are of utmost importance to ensure high performance of the catalysts. We shall concentrate on "Co Cu Mn","Co Cu Mo" and "Co Cu Nb" catalyst formulations, all prepared via oxalate precipitation and combined with"entrainment techniques" if necessary, and show high total alcohols selectivity can be obtained with tunable Anderson-Schulz-Flory chain-lengthening probability. Either long-chain C_8–C_(14)terminal alcohols as feedstock for plasticizers, lubricants and detergents, or short-chain C_2–C_5alcohols as "alkanol" fuels or fuel additives can be formed this way.  相似文献   

14.
Phosphorylated mesoporous carbons (PMCs) were investigated as catalysts in the dehydration of fructose to hydroxymethylfurfural (HMF). The acidic PMCs show better selectivity to HMF compared to sulfonated carbon catalyst (SC) despite lower activity. The concentration of P-O groups on the PMC was correlated with the activity/selectivity of the catalysts; the higher the P-O concentration, the higher the activity. However, the higher the P-O content, the lower the selectivity to HMF. Indeed, a lower concentration of the P-O groups minimized the degradation of HMF to levulinic acid and the formation of by-products, such as humines. Stability tests showed that these systems deactivate due to the formation of humines and water insoluble by-products derived from the dehydration of fructose which blocked the catalytically active sites.  相似文献   

15.
A sustainable strategy for Fischer–Tropsch iron catalysts is successfully achieved by embedding of synergistic promoters from a renewable resource, corncob. The iron-based catalysts, named as "corncob-driven"catalysts, are composed of iron species supported on carbon as primary active components and various minerals(K, Mg, Ca, and Si, etc.) as promoters. The corncob-driven catalysts are facilely synthesized by a one-pot hydrothermal treatment under mild conditions. The characterization results indicate that the formation of iron carbides from humboldtine is clearly enhanced and the morphology of catalyst particles tends to be more regular microspheres after adding corncob. It is observed that the optimized corncob-driven catalyst exhibits a higher conversion than without promoters' catalyst in Fischer–Tropsch synthesis(ca. 73% vs. ca. 49%). More importantly, a synergistic effect exists in multiple promoters from corncob that can enhance heavy hydrocarbons selectivity and lower CO_2 selectivity, obviously different from the catalyst with promoters from chemicals. The proposed synthesis route of corncob-driven catalysts provides new strategies for the utilization of renewable resources and elimination of environmental pollutants from chemical promoters.  相似文献   

16.
The dehydroaramatization of methane over W-supported ZSM-5 with varying degrees of Li^ ion-exchanged catalysts was studied with and without oxygen at 1073 K and atmospheric pressure.Catalyst activity and stability were found to be influenced by the catalyst acidity related to BrSnsted acid sites and by the presence of oxygen in the feed. The NH3-TPD and FTIR-pyridine results demonstrated that partially exchanged of H^ ions by Li^ into the W/HZSM-5 catalysts could be used to control the amount of strong acid sites on the catalyst surface. Without oxygen, the 3WHLi-Z (5:1) catalyst that has strong acid sites equal to nearly 74% of the original strong acid sites in the parent HZSM-5 exhibited the highest methane conversion and selectivity towards aromatics. However, the catalyst deactivated in a five hour period. In the presence of oxygen, the catalyst activity and stability could be improved further.The results of this study revealed that a suitable amount of strong Bronsted acid sites as well as oxygen addition in the feed increased the catalyst activity and stability. The 3WHLi-Z(5:1) catalyst exhibited improved performance in the dehydroaromatization of methane.  相似文献   

17.
Mg-Al mixed oxides with different Mg/Al molar ratio were prepared by thermal decomposition of hydrotalcitelike precursors at 500℃ for 5.0 h and used as catalysts for the transesterification of diphenyl carbonate with 1,4-butanediol to synthesize high-molecular-weight poly(butylene carbonate)(PBC). The structure-activity correlations of these catalysts in this transesterification process were discussed by means of various characterization techniques. It was found that the chain growth for the formation of PBC can only be obtained through connecting ―OH and ―OC(C)OC_6H_5 end-group upon removing the generated phenol, and the sample with Mg/Al molar ratio of 4.0 exhibited the best catalytic performance, giving PBC with M_w of 1.64 × 10~5 g/mol at 210 ℃ for 3.0 h. This excellent activity depended mainly on the specific surface area and basicity rather than pore structure or crystallite size of MgO.  相似文献   

18.
A set of mono-and bimetallic(Zn-Co) supported ZSM-5 catalysts was first prepared by PEG-additive method. The physicochemical properties of the catalysts were investigated by FTIR, XPS, XRD, N_2adsorption-desorption measurements, SEM, EDS and NH3-TPD techniques. The physicochemical properties showed that the Zn Co_2O_4 spinel oxide was formed on the ZSM-5 support and provided effectual synergetic effect between Zn and Co species for the bimetallic catalyst. Furthermore, bimetallic supported ZSM-5 catalyst exhibited weak, moderate and strong acidic sites, while the monometallic supported ZSM-5 catalyst showed only weak and moderate or strong acidic sites. Their catalytic performances for thermal decomposition of hexamethylene–1,6–dicarbamate(HDC) to hexamethylene–1,6–diisocyanate(HDI) were then studied. It was found that the bimetallic supported ZSM-5 catalysts,especially Zn-2Co/ZSM-5 catalyst showed excellent catalytic performance due to the good synergetic effect between Co and Zn species, which provided a suitable contribution of acidic sites. HDC conversion of 100% with HDI selectivity of 91.2% and by-products selectivity of 1.3% could be achieved within short reaction time of 2.5 h over Zn-2Co/ZSM-5 catalyst.  相似文献   

19.
The double perovskite oxides Sr2Mg1-xF exMoO6-δ were investigated as catalysts for the methane oxidation.The structural properties of catalysts were characterized in detail by X-ray diffraction,X-ray photoelectron spectroscopy and X-ray absorption spectroscopy.The catalytic property was strongly influenced by the Fe substitution.The relation between catalytic performance and the degree of Fe substitution was examined with regard to the structure and surface characteristics of the mixed oxides.The Fe-containing catalysts exhibited higher activity attributable to the possible(Fe2+,Mo6+) and (Fe3+,Mo5+)valency pairs,and the highest activity was observed for Sr2Mg0.2Fe0.8MoO6-δ.The enhancement of the catalytic activity may be correlated with the Fe-relating surface lattice oxygen species and was discussed in view of the presence of oxygen vacancies.  相似文献   

20.
A facile approach was developed for the preparation of nano-sized HZSM-5 with a hierarchical mesoporous structure by adding imidazole into conventional zeolite synthesis precursor solution. The physicochemical properties of modified HZSM-5 were characterized by X-ray diffraction(XRD), N_2 adsorption–desorption isotherms, scanning electron microscopy(SEM), NH_3-temperature-programmed desorption(NH_3-TPD) and pyridine adsorption infrared spectroscopy(Py-IR). The coke in spent catalysts was characterized by thermogravimetry(TG). The results showed that hierarchical HZSM-5 zeolites with excellent textural properties, such as abundant porous structure, uniform particle size and suitable acidity, could be synthesized by the recipe of one-pot synthesis routes. Moreover, the obtained HZSM-5 exhibited higher selectivity of total aromatics as well as longer lifetime in the catalytic conversion of methanol to aromatics, comparing with conventional HZSM-5. It is expected that the synthesis approach demonstrated here will be applicable to other zeolites with particular textural properties and controllable particle sizes, facilitating the emergence of new-type porous materials and their related applications in catalysis and separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号