首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper investigates the event-triggered sliding mode control (SMC) problem for singular systems with disturbance. Firstly, an event-triggered sliding mode control law is designed to guarantee the reachability of sliding surface. Different from the related methods, in order to deal with the difficulty caused by event-triggered SMC strategy, a novel Lemma is proposed in this paper. Secondly, the admissibility of sliding motion is presented, which is used to solve the controller gain. Then, a positive lower bound of the inter execution time can be guaranteed and the Zeno behavior is avoided. Finally, two simulation examples are presented to show the effectiveness of derived theoretical results.  相似文献   

2.
This paper addresses a sliding mode control (SMC) for an airfoil model excited by a combination of harmonic force and colored Gaussian noise. Firstly, to reveal effects of random factors, the airfoil model with colored Gaussian noise is established. Next, via a perturbation technique and the stochastic averaging method, an analytical expression for the time-averaging mean square response is derived, which agrees well with results by Monte Carlo simulations. Additionally, we uncover that colored noise can induce a stochastic jump phenomenon, which can cause a catastrophic structural failure of the airfoil or even a disintegration of the aircraft. Subsequently, the SMC strategy is employed to design an effective controller for suppressing such a jump phenomenon of the stochastic airfoil system. In the case of the proposed stochastic airfoil system, we introduce concepts of ultimately reachability with an arbitrary small bound and a mean square practical stability to realize the reachability of the sliding mode and the stability of the system state. Finally, several numerical results are presented to demonstrate the effectiveness of the proposed SMC algorithm. We show that the jump phenomenon can be suppressed efficiently to avoid a catastrophic failure of the wing structure due to large deformation/deflection, and the energy cost is discussed to analyze the SMC approach.  相似文献   

3.
This paper addresses the controller design problem of a nonlinear single degree-of-freedom structural system excited by the earthquake. Bouc–Wen model, as an efficient hysteresis modeling method, is used to model the system nonlinearity. Sliding mode control (SMC), due to its robustness in dealing with uncertainty, is utilized as the main control strategy. An optimal sliding surface is presented which minimizes the displacement and control force in terms of a quadratic cost function. Two numerical examples are given to illustrate the effectiveness of the proposed strategy subject to three earthquakes of El-Centro, Rinaldi and Kobe. Simulation results show a significant and considerable reduction in structural response and indicate that the performance of suggested optimal SMC strategy is remarkable.  相似文献   

4.
In this paper, an intelligent robust fractional surface sliding mode control for a nonlinear system is studied. At first a sliding PD surface is designed and then, a fractional form of these networks PDα, is proposed. Fast reaching velocity into the switching hyperplane in the hitting phase and little chattering phenomena in the sliding phase is desired. To reduce the chattering phenomenon in sliding mode control (SMC), a fuzzy logic controller is used to replace the discontinuity in the signum function at the reaching phase in the sliding mode control. For the problem of determining and optimizing the parameters of fuzzy sliding mode controller (FSMC), genetic algorithm (GA) is used. Finally, the performance and the significance of the controlled system two case studies (robot manipulator and coupled tanks) are investigated under variation in system parameters and also in presence of an external disturbance. The simulation results signify performance of genetic-based fuzzy fractional sliding mode controller.  相似文献   

5.
In this paper, an adaptive neural network (NN) sliding mode controller (SMC) is proposed to realize the chaos synchronization of two gap junction coupled FitzHugh–Nagumo (FHN) neurons under external electrical stimulation. The controller consists of a radial basis function (RBF) NN and an SMC. After the RBFNN approximating the uncertain nonlinear part of the error dynamical system, the SMC realizes the desired control property regardless of the existence of the approximation errors and external disturbances. The weights of the NN are tuned online based on the sliding mode reaching law. According to the Lyapunov stability theory, the stability of the closed error system is guaranteed. The control scheme is robust to the uncertainties such as approximate error, ionic channel noise and external disturbances. Chaos synchronization is obtained by the proper choice of the control parameters. The simulation results demonstrate the effectiveness of the proposed control method.  相似文献   

6.
This paper is concerned with the sliding mode control (SMC) for a class of nonlinear systems with time-delay. A novel optimal sliding mode is proposed by using the successive approximation approach (SAA). The stability of the nonlinear sliding mode is analyzed. The switching manifold ensures that the state trajectories of the closed-loop system converge to zero in an optimal fashion on the ideal sliding surface. Furthermore, the convergence velocity of every state trajectory on the ideal sliding surface can be adjusted through choosing the parameters of the quadratic performance index. A numerical simulation is given to show the effectiveness of the proposed design approach.  相似文献   

7.
N. Luo  M. de la Sen 《TOP》1995,3(1):1-34
Summary The problem of robust stabilization of internally delayed uncertain systems via sliding mode controllers (SMC's) is studied in this paper. The robustness property and assymptotic stability of the system are discussed. Some sufficient conditions for the design of SMC and the switching hyperplane are given. Further generalization results, which lead to a simple design and implementation, are made for the system being described in companion form. A method is suggested for the elimination of limit cycles in systems being regulated by a relay SMC while allowing the generation of sliding motion and thus ensuring the closed-loop asymptotic stability.  相似文献   

8.
This paper focus on the event-triggered sliding mode controller design for discrete-time switched genetic regulatory networks (GRNs) with persistent dwell time (PDT) switching. Firstly, the observation error dynamics of switched GRNs with PDT is constructed in the light of event-triggered sliding mode control (SMC) scheme. Next, sufficient conditions are derived to ensure the exponential stability of the augmented plant. Moreover, an event-triggered SMC law is synthesized to impel the system trajectories onto the sliding surface in a finite time. Finally, a verification example is provided to illustrate the effectiveness and potential of the proposed method.  相似文献   

9.
We consider the sliding mode control (SMC) problem for a diffuse interface tumor growth model coupling a Cahn–Hilliard equation with a reaction–diffusion equation perturbed by a maximal monotone nonlinearity. We prove existence and regularity of strong solutions and, under further assumptions, a uniqueness result. Then, we show that the chosen SMC law forces the system to reach within finite time a sliding manifold that we chose in order that the tumor phase remains constant in time.  相似文献   

10.
This paper considers a sliding mode control (SMC) of singular systems. The systems under consideration involve nonlinear perturbations and time-varying delays. The aim of this paper is to design a sliding mode controller such that the nonlinear singular system is exponentially stable and its trajectory can be driven onto the sliding surface in finite time. By using the Lyapunov–Krasovskii functional and some specified matrices, conditions on exponential stabilization are obtained in the form of strict linear matrix inequalities (LMIs). A numerical example is given to illustrate the effectiveness of the proposed main results. All these results are expected to be of use in the study of singular time-varying delay systems with nonlinear perturbations.  相似文献   

11.
讨论了载体位置无控、姿态受控情况下,具有外部扰动的漂浮基空间刚性机械臂,载体姿态与末端爪手协调运动的控制算法设计问题.结合系统动量守恒关系及Lagrange方法,建立了漂浮基空间刚性机械臂完全能控形式的系统动力学方程及运动Jacobi关系,并将其转化为状态空间形式的系统控制方程.以此为基础,根据Terminal滑模控制技术,给出了系统相关Terminal滑模面的数学表达式,在此基础上提出了具有外部扰动情况下漂浮基空间刚性机械臂载体姿态与末端爪手协调运动的Terminal滑模控制方案.提出的控制方案不但确保了闭环系统滑模阶段的存在性,同时通过Terminal滑模函数的适当选取,还保证了输出误差在有限时间内的收敛性.此外,由于确保了无论何种情况下系统初始状态均在Terminal滑模面上,从而消除了其它滑模控制方法常有的到达阶段,使得闭环系统具有全局鲁棒性和稳定性.平面两杆空间刚性机械臂的系统数值仿真,证实了方法的有效性.  相似文献   

12.
Saleh Mobayen 《Complexity》2016,21(5):117-124
In this article, a novel sliding mode control (SMC) approach is proposed for the control of a class of underactuated systems which are featured as in cascaded form with external disturbances. The asymptotic stability conditions on the error dynamical system are expressed in the form of linear matrix inequalities. The control objective is to construct a controller such that would force the state trajectories to approach the sliding surface with an exponential policy. The proposed SMC has a simple structure because it is derived from the associated first‐order differential equation and is capable of handling system disturbances and nonlinearities. The effectiveness of the proposed control method is validated using intensive simulations. © 2014 Wiley Periodicals, Inc. Complexity 21: 117–124, 2016  相似文献   

13.
The paper addresses the problem of row straightening of agents via local interactions. A nonlinear control protocol that ensures finite-time equidistant allocation on a segment is proposed. With the designed protocol, any settling time can be guaranteed regardless of the initial conditions. A robust modification of the control algorithm based on sliding mode control technique is presented. The case of multidimensional agents is also considered. The theoretical results are illustrated via numerical simulations.  相似文献   

14.
This paper addresses chaos anti-synchronization of uncertain unified chaotic systems with dead-zone input nonlinearity. Using the sliding mode control technique and Lyapunov stability theory, a proportional–integral (PI) switching surface is proposed to ensure the stability of the closed-loop error system in sliding mode. Then a sliding mode controller (SMC) is proposed to guarantee the hitting of the switching surface even with uncertainties and the control input containing dead-zone nonlinearity. Some simulation results are included to demonstrate the effectiveness and feasibility of the proposed synchronization scheme.  相似文献   

15.
This paper presents a robust algorithm to control the chaotic atomic force microscope system (AFMs) by backstepping design procedure. The proposed feedback controller is composed by a sliding mode control (SMC) and a backstepping feedback, so its implementation is quite simple and can be made on the basis of the measured signal. The developed control scheme allows chaos suppression despite uncertainties in the model as well as system external disturbances. The concept of extended system is used such that a continuous sliding mode control effort is generated using backstepping scheme. It is guaranteed that under the proposed control law, uncertain AFMs can asymptotically track target orbits. The converging speed of error states can be arbitrary turned by assigning the corresponding dynamics of the sliding surfaces. Numerical simulations demonstrate its advantages by stabilizing the unstable periodic orbits of the AFMs and this method can also be easily extended to elimination chaotic motion in any types of chaotic AFMs.  相似文献   

16.
The problem of fault identification in hybrid systems is investigated. It is assumed that the hybrid systems under consideration consist of a finite automaton, the set of nonlinear differential equations, and so-called mode activator that coordinates the action of these two parts. To solve the fault identification problem, sliding mode observers are used. The suggested approach for constructing sliding mode observers is based on the reduced order model of the original system. This allows to reduce complexity of sliding mode observers and relax the limitations imposed on the original system. Examples illustrate details of the solution.  相似文献   

17.
The tracking control problem is studied for a class of uncertain non-affine systems. Based on the principle of sliding mode control (SMC), using the neural networks (NNs) and the property of the basis function, a novel adaptive design scheme is proposed. A novel Lyapunov function, which depends on both system states and control input variable, is used for the development of the control law and the adaptive law. The approach overcomes the drawback in the literature. In addition, the lumped disturbances are taken in account. By theoretical analysis, it is proved that tracking errors asymptotically converge to zero. Finally, simulation results demonstrate the effectiveness of the proposed approach.  相似文献   

18.
This paper addresses the modified function projective lag synchronization (MFPLS) for a class of chaotic systems with unknown external disturbances. The disturbances are supposed to be generated by the exogenous systems. By using the disturbance-observer-based control and the linear matrix inequality approach, the disturbance observers are developed to ensure the boundedness of the disturbance error dynamics. Then by employing the sliding mode control (SMC) technique, an active SMC law is established to guarantee the disturbance rejection and realize MFPLS between the master and slave systems. And the corresponding numerical simulation is provided to illustrate the effectiveness of the proposed method.  相似文献   

19.
This article proposes a novel adaptive sliding mode control (SMC) scheme to realize the problem of robust tracking and model following for a class of uncertain time‐delay systems with input nonlinearity. It is shown that the proposed robust tracking controller guarantees the stability of overall closed‐loop system and achieves zero‐tracking error in the presence of input nonlinearity, time‐delays, time‐varying parameter uncertainties and external disturbances. The selection of sliding surface and the existence of sliding mode are two important issues, which have been addressed. This scheme assures robustness against input nonlinearity, time‐delays, parameter uncertainties, and external disturbances. Moreover, the knowledge of the upper bound of uncertainties is not required and chattering phenomenon is eliminated. Both theoretical analysis and illustrative examples demonstrate the validity of the proposed scheme. © 2014 Wiley Periodicals, Inc. Complexity 21: 66–73, 2015  相似文献   

20.
This paper presents a new approach for sliding mode control (SMC) design of a class of uncertain nonlinear stochastic Markovian jump systems (MJSs) with time-varying delay. The attention is focused on removing a structural assumption, under which several studies concerning SMC to accommodate Itô stochastic systems have been reported. Sufficient conditions in terms of LMIs are established to guarantee the existence of the sliding surface, then the reachability is analyzed. Compared with the existing results, the mode-independent sliding surface can be derived to weaken jumping effect. The theoretical results are illustrated by a numerical example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号