首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intramolecular magnetic coupling constant (J) values of diradical systems linked with two monoradicals through a coupler (para-substituted phenyl acetylene (Model I), meta-substituted phenyl acetylene (Model II), ethylene (Model III)) were investigated by unrestricted density functional theory calculations. We divided eight monoradicals into α-group and β-group according to Mulliken spin density values of the connected atoms. The overall trends in the strength of magnetic interactions of diradicals were found to be identical in three different model systems. The diradicals with para-substituted phenyl acetylene coupler resulted in almost twice stronger intramolecular magnetic coupling interactions of the corresponding diradicals as compared to the meta-substituted one with opposite magnetism. NN-Ethylene-PO (nitronyl nitroxide radical coupled to phenoxyl radical via ethylene coupler) was calculated to have the strongest magnetic coupling constant with ferromagnetism, and to be even stronger (more than twice) than NN-ethylene-NN (nitronyl nitroxide diradical with ethylene coupler), which was reported to have strong antiferromagnetic interactions in a previous experiment. It was found that the spin density values of the connected atoms are closely related to the determination of magnetic interactions and J values. The spin states of the ground state in diradical systems were explained by means of the spin alternation rule.  相似文献   

2.
The ferromagnetic phenyl nitronyl nitroxide derivate alpha-phase 2-(2('),5(')-dihydroxyphenyl)- 4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazolyl-1-oxy-3-oxide has been studied by the electronic structure calculation based on the density functional theory. The result shows that the spin delocalization due to hyperconjugation effect plays an important role in the spin distribution and ferromagnetic coupling of the crystal.  相似文献   

3.
In the recent years, a wide variety of transition metal complexes with the nitronyl radical ligands have been reported1,2. These systems display the various magnetic behaviors (ferro- or antiferro-magnetism) between the unpaired electrons on the radical ligands and on the paramagnetic metal ion center. However, few theoretical studies on the metal-radical complexes were reported and quite few are known about the nature of the exchange coupling interactions. In this work, we are interested i…  相似文献   

4.
Complexation of copper(II) bromide and chloride with 4-pyrimidinyl nitronyl nitroxide (4PMNN) as a bridging ligand gave discrete hexanuclear complexes carrying 12 spins, [CuX(2).(4PMNN)](6) [X = Br (1), Cl (2)], which crystallize in a trigonal space group. The crystallographic parameters are C(11)H(15)Br(2)CuN(4)O(2).0.3H(2)O, a = 28.172(2), c = 12.590(2) A, V = 8653(2) A(3), and Z = 18 for 1, and C(11)H(15)Cl(2)CuN(4)O(2).0.3H(2)O, a = 28.261(2), c = 12.378(1) A, and Z = 18 for 2. The hexanuclear arrays construct a perfect column perpendicular to the molecular plane. The diameter of the resultant honeycomblike channel is ca. 11.5 A defined by the interatomic distance of two opposing copper ions. Their magnetic behavior is interpreted as the simultaneous presence of ferro and antiferromagnetic couplings. The ferromagnetic couplings are attributed to the interactions between a copper spin and the axially coordinated nitronyl nitroxide spin and between nitronyl nitroxide groups through van der Waals contacts. The antiferromagnetic coupling is due to the interaction between copper ions across the pyrimidine bridges.  相似文献   

5.
The synthesis, crystal structure and magnetic properties of a novel diamagnetic metal complex containing thiazole-substituted nitronyl nitroxide radicals, [HgCl2(NIT2-thz)2] (NIT2-thz?= 2-(2′-thiazole)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide), is reported. The mercury(II) ion has distorted tetrahedral coordination involving two chloride atoms and two thiazole nitrogen atoms. Magnetic susceptibility data show that there are intramolecular antiferromagnetic interactions between the radicals in the complex.  相似文献   

6.
A "spin diverse" S = 3/2 ground-state complex, NN-SQCuTpCum,Me, has been prepared. The three S = 1/2 spin carriers are nitronyl nitroxide (NN), o-semiquinone (o-SQ), and cupric ion. The solid-state structure of the ZnII derivative, NN-SQZnTpCum,Me (C56H69BN8O4Zn), was determined: monoclinic, P2(1)/c, a = 12.5781(12) A, b = 17.7408(17) A, c = 24.440(2) A, alpha = 90.00 degrees, beta = 98.240(2) degrees, gamma = 90.00 degrees, Z = 4. The results of X-ray structural characterization of the ZnII derivative suggest substantial interaction between the two spin carriers NN and o-SQ. Indeed, strong intramolecular exchange coupling has been determined by variable-temperature magnetic susceptibility studies. Intraligand ferromagnetic exchange is considerably greater than kT, such that only the triplet state is populated at 300 K, and CuII-ligand exchange is ferromagnetic, with J = +75 cm-1.  相似文献   

7.
任杰  王炳武  陈志达 《中国科学B辑》2009,39(11):1501-1508
应用密度泛函理论结合对称性破损方法(DFT-BS)研究了Y^III-,Gd^III-氮氧自由基配合物,Ln(hfac)3(NITPhOCH3)2(Ln=Y^III1,Gd^III2,hafc=hexafluoroacetylacetonate)(NITPhOCH3=4'-methoxyo—phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide).这两个配合物的中心离子分别是抗磁性的Y^III和顺磁性的Gd^III.它们各自被两个氮氧自由基配位,形成一个两自旋中心和一个三自旋中心的磁性分子体系.分子磁轨道分析显示,在这两个配合物的氮氧自由基之间的反铁磁耦合作用中,Y^III和Gd^III离子空的4d/5d轨道扮演了磁耦合的传递作用.对于Gd^III和自由基配体之间的铁磁耦合作用,通过半充满的4厂壳层和自由基的NO(π^*)局域磁轨道的重叠积分计算显示,它们之间的轨道重叠非常小.磁轨道分析和自旋布居分析也显示Gd^III收缩的4广轨道和NO(π^*)局域磁轨道都相当定域,所以我们认为这种铁磁性耦合主要是由于Gd^III的4f^7轨道与NO(π^*)局域磁轨道近乎完全定域的结果.  相似文献   

8.
《Polyhedron》2007,26(9-11):1890-1894
We have designed and synthesized new biradicals of p-phenylene-bis(nitronyl nitroxide) substituted with two methoxy groups at 2,3- (2) and 2,5-positions (3). A parent biradical p-phenylene-bis(nitronyl nitroxide) (1) has intramolecular antiferromagnetic exchange interaction of 2J/kB = −104 K  −106 K with a torsion angle of 28.5° between the phenyl and the imidazole rings of nitronyl nitroxide. X-ray crystal structure analysis shows that the bulky substituents in 2 and 3 give large torsion angles of 65–70°. The larger torsion angles should weaken the magnitude of intramolecular exchange interactions, which is attributed to a decrease in π-conjugation over the p-phenylene and the radical groups. Magnetic susceptibility measurements indicate that the intramolecular exchange interactions in 2 and 3 are severely weakened to about 6% of that in 1, 2J/kB = −6 K  −8 K. The relation between the torsion angle and the intramolecular exchange interaction is consistent with DFT calculations. The ground-state singlet biradicals with suppressed intramolecular exchange interactions can be a building block for exotic exchange-coupled spin systems as predicted in our theoretical studies.  相似文献   

9.
A silver(I) complex with nitronyl nitroxide, [Ag2(NIT-R)4(NO3)2]?·?CH3OH [NIT-R?=?2-(5-methylimidazol-4-yl)-4,4,5,5-tetramethyl-2-imidazoline-1-oxyl-3-oxide], has been prepared and characterized by magnetic and single-crystal X-ray diffraction studies. In the complex, the silver(I) ion is coordinated with two monodentate nitronyl nitroxide radicals by the nitrogen of the imizadole ring. The silver(I) ion is two-coordinate and forms a dimer through Ag?···?Ag weak metal bonding interactions. The magnetic properties for the title complex have been investigated in the temperature range 2?~?300?K showing ferromagnetic interactions between the coordinated nitronyl nitroxides (J?=?3.64?cm?1) and intermolecular antiferromagnetic interactions.  相似文献   

10.
A new one-dimensional chain complex, Mn(hfac)(2)-bridged [2-(3-pyridyl)(nitronyl nitroxide)Mn(hfac)(2)](2), was prepared and its structure and magnetic properties were elucidated; the complex exhibited a large antiferromagnetic interaction of J(1)=-185 K between the three Mn(ii) atoms and the two nitronyl nitroxides to give S=13/2 spin units and a small ferromagnetic interaction of J(3)'=+0.02 K between these spin units at low temperatures (50-1.9 K), compatible with the theoretical analysis for model compounds.  相似文献   

11.
The synthesis, crystal structure, and magnetic properties of a one-dimensional compound, {[Mn(hfac)2]2(biradical)}n (1), resulting from the coordination of bis(hexafluoroacethylacetonato)manganese(II) [Mn(hfac)2] with a biradical obtained by grafting two nitronyl nitroxide radicals in the 5 and 5' positions of a 2,2'-bipyridine ligand are described. Compound 1 crystallizes in the triclinic P space group with the following parameters: a = 11.905(2) A, b = 12.911(2) A, c = 20.163(3) A, alpha = 73.556(3) degrees , beta = 80.850(3) degrees , gamma = 82.126(3) degrees , Z = 2. The bipyridyl moiety acts as a chelate toward one [Mn(hfac)2] unit, while the pendent nitronyl nitroxide radicals are symmetrically bound in trans-configuration to additional [Mn(hfac)2] units. The result is infinite chains running along the c axis direction with the biradical bridging [Mn(hfac)2] units with pending bipyridine/Mn(hfac)2 cores. The magnetic behavior is characteristic of ferrimagnetic chains. Qualitatively we observe first the antiferromagnetic coupling (J2) of each manganese(II) center with two nitronyl nitroxide moieties, leading to a minimum in the chiT product of 6.63 emu K mol(-1) observed at 70 K and corresponding to a ground spin state S = 3/2 plus one extra spin S = 5/2 coming from the pending manganese(II) center. The increase of chiT at lower temperature is understood as a fictive ferromagnetic coupling related to the true antiferromagnetic coupling J1 of the pseudospin S = 3/2 with spin S = 5/2 of the pending manganese(II). Along this approach (H = -JSiSj) the best fit (300-8 K) of the experimental data leads to J1 = -0.622 +/- 0.022 cm(-1) and J2 = -203 +/- 3 cm(-1) with g(Rad) = 2.0017 +/- 0.0015 and g(Mn) = 2.0017 +/- 0.0015.  相似文献   

12.
Electrospray ionization (ESI) mass spectra have been recorded for a range of substituted nitronyl nitroxide and iminyl nitroxide monoradicals and biradicals. Secondary species formed in the ESI source were observed as the dominant ions in both the iminyl nitroxide and nitronyl nitroxide spectra. Daughter ion spectrometry was used to establish fragmentation mechanisms for the nitronyl nitroxide and iminyl nitroxide moieties as well as the secondary species under ESI conditions.  相似文献   

13.
The magnetic coupling interactions of the nitronyl nitroxide radicals bound to diamagnetic (YIII) and paramagnetic (GdIII) rare earth ions in two model magnetic systems based on novel rare earth organic radical complexes Ln(hfac)3(NITPhOCH3)2 (Ln = YIII 1, GdIII 2; hafc = hexafluoroacetylacetonate; NITPhOCH3 = 4′-methoxyo-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) have been investigated by density functional theory (DFT). The magnetic coupling mechanisms were also explored from the viewpoint of molecular orbital and spin density populations. DFT calculations show that the empty 4d-orbitals of YIII and 5d-orbitals of GdIII play an important role in the antiferromagnetic coupling between the two nitronyl nitroxide radical ligands, and that the ferromagnetic coupling between the GdIII ion and the radical magnetic centers can be attributed to the nearly complete localization of the isotropic 4f-shell and singly occupied magnetic orbital (Π*) of the nitronyl nitroxide.  相似文献   

14.
Stable nitroxide radicals are useful to construct molecular magnetic systems. Particularly, radicals substituted by –COOH and –CONH2 can be coordinated to magnetic metal ions and may be used as cladding reagents of gold nano-particles for modifying magnetism. Nitroxide molecules with unsaturated five-member ring have almost planner structure and electron spin delocalization may be expected. We determined the hyperfine coupling constants (hfcc) of 1H, 2H and 13C of a series of nitroxide radicals with five-member ring. Experimental values of hfcc were compared with those deduced from calculations based on density functional theory. The electron spin density distribution at β position of ring was sensitive to the ring structure, although the electron spin density at β position is small compared with N–O site. Magnetic susceptibility and UV–Vis absorption spectra were also measured and discussed.  相似文献   

15.
Abstract— Photolytic decomposition of sodium nitroprusside (SNP), a widely used nitrovasodilator, produced nitric oxide (NO), which was continuously monitored by electron spin resonance (ESR) spectroscopy. The NO present in the aqueous or the lipid phase was trapped by either a hydrophilic or a hydrophobic nitronyl nitroxide, respectively, to form the corresponding imino nitroxide. The conversion of nitronyl nitroxide to imino nitroxide was monitored by ESR spectrometry. The quantum yield for the generation of NO from SNP, measured from the rate of decay of nitronyl nitroxide, was 0.201 ± 0.007 and 0.324 ± 0.01 (¯± SD, n = 3) at 420 nm and 320 nm, respectively. The action spectrum for NO generation was found to overlap the optical absorption spectrum of SNP closely. A mechanism for the reaction between SNP and nitronyl nitroxide in the presence of light is proposed and computer-aided simulation of this mechanism using published rate constants agreed well with experimental data. The methodology described here may be used to assay NO production continuously during photoactivation of NO donors in aqueous and lipid environments. Biological implications of this methodology are discussed.  相似文献   

16.
《Polyhedron》2003,22(14-17):2343-2348
Radical cation and anion salts of the neutral organic radicals, 2-imidazolyl nitronyl nitroxide (2-IMNN) and 2-benzimidazolyl nitronyl nitroxide (2-BIMNN), have been prepared and their magnetic properties studied by SQUID magnetometry. The radical salts exhibit one-dimensional (1-d) antiferromagnetic (AFM) intermolecular interactions with the exchange coupling J/k between −0.8 and −6.3 K, which are significantly reduced from those observed in the two neutral radicals, while 2-IMNN shows an AFM interaction with J/k=−88 K within the molecular dimers and 2-BIMNN has quasi 1-d ferromagnetic (FM) intermolecular interactions with J/k=+22 K (intrachain) and zJ′/k=+0.24 K (interchain). The magnetic properties of the nitronyl nitroxide and iminonitroxide derivatives having molecular structure related to 2-IMNN have also been investigated. In 2-benzimidazolyl iminonitroxide (2-BIMIN), the FM interaction observed in 2-BIMNN is replaced by strong 1-d AFM interaction with J/k=−11.7 K.  相似文献   

17.
A series of nitronyl nitroxide (NN) diradicals with linear conjugated couplers and another series with aromatic couplers have been investigated by the broken-symmetry (BS) DFT approach. The overlap integral between the magnetically active orbitals in the BS state has been explicitly computed and used for the evaluation of the magnetic exchange coupling constant (J). The calculated J values are in very good agreement with the observed values in the literature. The magnitude of J depends on the length of the coupler as well as the conformation of the radical units. The aromaticity of the spacer decreases the strength of the exchange coupling constant. The SOMO-SOMO energy splitting analysis, where SOMO stands for the singly occupied molecular orbital, and the calculation of electron paramagnetic resonance (EPR) parameters have also been carried out. The computed hyperfine coupling constants support the intramolecular magnetic interactions. The nature of magnetic exchange coupling constant can also be predicted from the shape of the SOMOs as well as the spin alternation rule in the unrestricted Hartree-Fock (UHF) treatment. It is found that pi-conjugation along with the spin-polarization plays the major role in controlling the magnitude and sign of the coupling constant.  相似文献   

18.
Nitroxide free radicals are the most commonly used source for dynamic nuclear polarization (DNP) enhanced nuclear magnetic resonance (NMR) experiments and are also exclusively employed as spin labels for electron spin resonance (ESR) spectroscopy of diamagnetic molecules and materials. Nitroxide free radicals have been shown to have strong dipolar coupling to (1)H in water, and thus result in large DNP enhancement of (1)H NMR signal via the well known Overhauser effect. The fundamental parameter in a DNP experiment is the coupling factor, since it ultimately determines the maximum NMR signal enhancements which can be achieved. Despite their widespread use, measurements of the coupling factor of nitroxide free radicals have been inconsistent, and current models have failed to successfully explain our experimental data. We found that the inconsistency in determining the coupling factor arises from not taking into account the characteristics of the ESR transitions, which are split into three (or two) lines due to the hyperfine coupling of the electron to the (14)N nuclei (or (15)N) of the nitric oxide radical. Both intermolecular Heisenberg spin exchange interactions as well as intramolecular nitrogen nuclear spin relaxation mix the three (or two) ESR transitions. However, neither effect has been taken into account in any experimental studies on utilizing or quantifying the Overhauser driven DNP effects. The expected effect of Heisenberg spin exchange on Overhauser enhancements has already been theoretically predicted and observed by Bates and Drozdoski [J. Chem. Phys. 67, 4038 (1977)]. Here, we present a new model for quantifying Overhauser enhancements through nitroxide free radicals that includes both effects on mixing the ESR hyperfine states. This model predicts the maximum saturation factor to be considerably higher by the effect of nitrogen nuclear spin relaxation. Because intramolecular nitrogen spin relaxation is independent of the nitroxide concentration, this effect is still significant at low radical concentrations where electron spin exchange is negligible. This implies that the only correct way to determine the coupling factor of nitroxide free radicals is to measure the maximum enhancement at different concentrations and extrapolate the results to infinite concentration. We verify our model with a series of DNP experimental studies on (1)H NMR signal enhancement of water by means of (14)N as well as (15)N isotope enriched nitroxide radicals.  相似文献   

19.
Wang H  Liu Z  Liu C  Zhang D  Lü Z  Geng H  Shuai Z  Zhu D 《Inorganic chemistry》2004,43(13):4091-4098
Three new complexes of the formula M(2)L(2) derived from 2-(4-quinolyl)nitronyl nitroxide (4-QNNN) and M(hfac)(2) [M = Mn(II), Co(II), and Cu(II)], (4-QNNN)(2).[Mn(hfac)(2)](2) (1), (4-QNNN)(2).[Co(hfac)(2)](2).2H(2)O (2), and (4-QNNN)(2).Cu(hfac)(2).Cu'(hfac)(2) (3), were synthesized and characterized structurally as well as magnetically. Complexes 1 and 2 are four-spin complexes with quadrangle geometry, in which both the nitrogen atoms of quinoline rings and oxygen atoms of nitronyl nitroxides are involved in the formation of coordination bonds. For complex 3, however, the nitrogen atoms of quinoline rings are coordinated with Cu(II) ion to afford a three-spin complex, which is further linked to another molecule of Cu(hfac)(2) (referred to as Cu'(hfac)(2)) to form a 1D alternating chain. The magnetic behaviors of the three complexes were investigated. For complex 1, as the nitronyl nitroxides and Mn(II) ions are strongly antiferromagnetically coupled, consequently its temperature dependence of magnetic susceptibility was fitted to the model of spin-dimer with S = 2, yielding the intradimer magnetic exchange constant of J = -0.82 cm(-1). For complex 2, the temperature dependence of the magnetic susceptibility in the T > 50 K region was simulated with the model of two-spin unit with S(1) = 3/2 and S(2) = 1/2, leading to J = -321.9 cm(-1) for the magnetic interaction due to Co(II).O coordination bonding, D = -16.3 cm(-1) (the zero-field splitting parameter), g = 2.26, and zJ = -3.8 cm(-1) for the magnetic interactions between Co(II) ions and nitronyl nitroxides through quinoline rings and those between nitronyl nitroxides due to the short O.O short contacts. The temperature dependence of magnetic susceptibility of 3 was approximately fitted to a model described previously affording J(1) = -6.52 cm(-1) and J(2) = 3.64 cm(-1) for the magnetic interaction between nitronyl nitroxides and Cu(II) ions through the quinoline unit via spin polarization mechanism and the weak O.Cu coordination bonding, respectively.  相似文献   

20.
Photoswitching of an intramolecular spin exchange interaction between a copper(II) ion and a nitroxyl radical by using a metal complex of diarylethene has been studied by means of ESR spectroscopy. As a coordination ligand, a diarylethene with a 1,10-phenanthroline ring and nitronyl nitroxide radical was synthesized. Mixing the diarylethene ligand with [Cu(hfac)(2)] (hfac=hexafluoroacetylacetone) in toluene led to a hypsochromic shift of the absorption maxima of the closed-ring isomer due to complexation. ESR measurement in toluene at room temperature of the open-ring isomer of the Cu(II) complex gave a spectrum that is a superposition of the spectra from the nitroxide radical and Cu(II). When the sample was irradiated with 366 nm light, a new peak due to large exchange interaction appeared between those of the nitroxyl radical and Cu(II). This ESR measurement revealed that the magnitude of the spin exchange interaction was changed by more than 160-fold by photoirradiation. This is the largest magnetic photoswitching phenomenon recorded in diarylethene systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号