首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cycle embedding in star graphs with conditional edge faults   总被引:1,自引:0,他引:1  
Among the various interconnection networks, the star graph has been an attractive one. In this paper, we consider the cycle embedding problem in star graphs with conditional edge faults. We show that there exist cycles of all even lengths from 6 to n! in an n-dimensional star graph with ?2n-7 edge faults in which each vertex is incident with at least two healthy edges for n?4.  相似文献   

2.
3.
The star graph is one of the most attractive interconnection networks. The cycle embedding problem is widely discussed in many networks, and edge fault tolerance is an important issue for networks since edge failures may occur when a network is put into use. In this paper, we investigate the cycle embedding problem in star graphs with conditional faulty edges. We show that there exist fault-free cycles of all even lengths from 6 to n! in any n-dimensional star graph Sn (n ? 4) with ?3n − 10 faulty edges in which each node is incident with at least two fault-free edges. Our result not only improves the previously best known result where the number of tolerable faulty edges is up to 2n − 7, but also extends the result that there exists a fault-free Hamiltonian cycle under the same condition.  相似文献   

4.
A hamiltonian cycle C of a graph G is an ordered set u1,u2,…,un(G),u1 of vertices such that uiuj for ij and ui is adjacent to ui+1 for every i{1,2,…,n(G)−1} and un(G) is adjacent to u1, where n(G) is the order of G. The vertex u1 is the starting vertex and ui is the ith vertex of C. Two hamiltonian cycles C1=u1,u2,…,un(G),u1 and C2=v1,v2,…,vn(G),v1 of G are independent if u1=v1 and uivi for every i{2,3,…,n(G)}. A set of hamiltonian cycles {C1,C2,…,Ck} of G is mutually independent if its elements are pairwise independent. The mutually independent hamiltonicity IHC(G) of a graph G is the maximum integer k such that for any vertex u of G there exist k mutually independent hamiltonian cycles of G starting at u.In this paper, the mutually independent hamiltonicity is considered for two families of Cayley graphs, the n-dimensional pancake graphs Pn and the n-dimensional star graphs Sn. It is proven that IHC(P3)=1, IHC(Pn)=n−1 if n≥4, IHC(Sn)=n−2 if n{3,4} and IHC(Sn)=n−1 if n≥5.  相似文献   

5.
《Discrete Mathematics》2023,346(1):113160
Let Pk and Ck respectively denote a path and a cycle on k vertices. In this paper, we give necessary and sufficient conditions for the existence of a complete {P2p+1,C2p}-decomposition of even regular complete equipartite graphs for all prime p.  相似文献   

6.
In 1988, Golumbic and Hammer characterized the powers of cycles, relating them to circular arc graphs. We extend their results and propose several further structural characterizations for both powers of cycles and powers of paths. The characterizations lead to linear-time recognition algorithms of these classes of graphs. Furthermore, as a generalization of powers of cycles, powers of paths, and even of the well-known circulant graphs, we consider distance graphs. While the colorings of these graphs have been intensively studied, the recognition problem has been so far neglected. We propose polynomial-time recognition algorithms for these graphs under additional restrictions.  相似文献   

7.
The star graph, as an interesting network topology, has been extensively studied in the past. In this paper, we address some of the combinatorial properties of the star graph. In particular, we consider the problem of calculating the surface area and volume of the star graph, and thus answering an open problem previously posed in the literature. The surface area of a sphere with radius i in a graph is the number of nodes in the graph whose distance from a given node is exactly i. The volume of a sphere with radius i in a graph is the number of nodes within distance i from the given node. In this paper, we derive explicit expressions to calculate the surface area and volume in the star graph.  相似文献   

8.
9.
《Discrete Mathematics》2023,346(1):113215
The cycle spectrum of a given graph G is the lengths of cycles in G. In this paper, we introduce the following problem: determining the maximum number of edges of an n-vertex graph with given cycle spectrum. In particular, we determine the maximum number of edges of an n-vertex graph without containing cycles of lengths three and at least k. This can be viewed as an extension of a well-known result of Erd?s and Gallai concerning the maximum number of edges of an n-vertex graph without containing cycles of lengths at least k. We also determine the maximum number of edges of an n-vertex graph whose cycle spectrum is a subset of two positive integers.  相似文献   

10.
11.
Both the circulant graph and the generalized Petersen graph are important types of graphs in graph theory. In this paper, the structures of embeddings of circulant graph C(2n + 1; {1, n}) on the projective plane are described, the number of embeddings of C(2n + 1; {1, n}) on the projective plane follows, then the number of embeddings of the generalized Petersen graph P(2n +1, n) on the projective plane is deduced from that of C(2n +1; {1, n}), because C(2n + 1;{1, n}) is a minor of P(2n + 1, n), their structures of embeddings have relations. In the same way, the number of embeddings of the generalized Petersen graph P(2n, 2) on the projective plane is also obtained.  相似文献   

12.
A star edge coloring of a graph is a proper edge coloring such that every connected 2-colored subgraph is a path with at most 3 edges. Deng et al. and Bezegová et al. independently show that the star chromatic index of a tree with maximum degree Δ is at most ?3Δ2?, which is tight. In this paper, we study the list star edge coloring of k-degenerate graphs. Let chst(G) be the list star chromatic index of G: the minimum s such that for every s-list assignment L for the edges, G has a star edge coloring from L. By introducing a stronger coloring, we show with a very concise proof that the upper bound on the star chromatic index of trees also holds for list star chromatic index of trees, i.e. chst(T)?3Δ2? for any tree T with maximum degree Δ. And then by applying some orientation technique we present two upper bounds for list star chromatic index of k-degenerate graphs.  相似文献   

13.
We show a construction that gives an infinite family of claw-free graphs of connectivity κ=2,3,4,5 with complete closure and without a cycle of a given fixed length. This construction disproves a conjecture by the first author, A. Saito and R.H. Schelp.  相似文献   

14.
A distance graph is a graph G(R,D) with the set of all points of the real line as vertex set and two vertices u,vR are adjacent if and only if |u-v|∈D where the distance set D is a subset of the positive real numbers. Here, the vertex linear arboricity of G(R,D) is determined when D is an interval between 1 and δ. In particular, the vertex linear arboricity of integer distance graphs G(D) is discussed, too.  相似文献   

15.
Day and Tripathi [K. Day, A. Tripathi, Unidirectional star graphs, Inform. Process. Lett. 45 (1993) 123-129] proposed an assignment of directions on the star graphs and derived attractive properties for the resulting directed graphs: an important one is that they are strongly connected. In [E. Cheng, M.J. Lipman, On the Day-Tripathi orientation of the star graphs: Connectivity, Inform. Process. Lett. 73 (2000) 5-10] it is shown that the Day-Tripathi orientations are in fact maximally arc-connected when n is odd; when n is even, they can be augmented to maximally arc-connected digraphs by adding a minimum set of arcs. This gives strong evidence that the Day-Tripathi orientations are good orientations. In [E. Cheng, M.J. Lipman, Connectivity properties of unidirectional star graphs, Congr. Numer. 150 (2001) 33-42] it is shown that vertex-connectivity is maximal, and that if we delete as many vertices as the connectivity, we can create at most two strong connected components, at most one of which is not a singleton. In this paper we prove an asymptotically sharp upper bound for the number of vertices we can delete without creating two nonsingleton strong components, and we also give sharp upper bounds on the number of singletons that we might create.  相似文献   

16.
A bipartite graph G=(V,E) is said to be bipancyclic if it contains a cycle of every even length from 4 to |V|. Furthermore, a bipancyclic G is said to be edge-bipancyclic if every edge of G lies on a cycle of every even length. Let Fv (respectively, Fe) be the set of faulty vertices (respectively, faulty edges) in an n-dimensional hypercube Qn. In this paper, we show that every edge of Qn-Fv-Fe lies on a cycle of every even length from 4 to 2n-2|Fv| even if |Fv|+|Fe|?n-2, where n?3. Since Qn is bipartite of equal-size partite sets and is regular of vertex-degree n, both the number of faults tolerated and the length of a longest fault-free cycle obtained are worst-case optimal.  相似文献   

17.
18.
19.
In [J.-M. Chang, J.-S. Yang. Fault-tolerant cycle-embedding in alternating group graphs, Appl. Math. Comput. 197 (2008) 760-767] the authors claim that every alternating group graph AGn is (n − 4)-fault-tolerant edge 4-pancyclic. Which means that if the number of faults ∣F∣ ? n − 4, then every edge in AGn − F is contained in a cycle of length ?, for every 4 ? ? ? n!/2 − ∣F∣. They also claim that AGn is (n − 3)-fault-tolerant vertex pancyclic. Which means that if ∣F∣ ? n − 3, then every vertex in AGn − F is contained in a cycle of length ?, for every 3 ? ? ? n!/2 − ∣F∣. Their proofs are not complete. They left a few important things unexplained. In this paper we fulfill these gaps and present another proofs that AGn is (n − 4)-fault-tolerant edge 4-pancyclic and (n − 3)-fault-tolerant vertex pancyclic.  相似文献   

20.
We show that a complete equipartite graph with four partite sets has an edge-disjoint decomposition into cycles of length k if and only if k≥3, the partite set size is even, k divides the number of edges in the equipartite graph and the total number of vertices in the graph is at least k. We also show that a complete equipartite graph with four even partite sets has an edge-disjoint decomposition into paths with k edges if and only if k divides the number of edges in the equipartite graph and the total number of vertices in the graph is at least k+1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号