首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The concentration and speciation of arsenic incorporated by plants grown in the presence of different arsenic compounds was compared, and the influence of plant sample pretreatment and extraction procedures on the recovery and reliability of speciation analyses was studied. It was concluded that sample pretreatment greatly affected the extraction efficiency, but did not change arsenic speciation. The most suitable extraction procedure involved dried plant material without the use of liquid nitrogen. To assess the ability of White mustard to uptake arsenic in different forms, samples were cultivated in nutrient solutions containing either As(III), As(V), monomethylarsonic acid (MMA) or dimethylarsinic acid (DMA). The translocation factor was the highest (0.70) when DMA was added to the nutrient solution, however the overall As concentration in plant tissues was the lowest in this case. Only inorganic As was found in plant tissues when either As(III) or As(V) was added to the nutrient solution. When organic arsenic was present in the nutrient medium, however, it was partially transformed by the plants into inorganic forms.  相似文献   

2.
Schmidt AC  Haufe N  Otto M 《Talanta》2008,76(5):1233-1240
An easily feasible, species-conserving and inexpensive protocol for the extraction of total arsenic and arsenic species from terrestrial plants was designed and applied to the investigation of accumulation and metabolization of arsenite (As(III)), arsenate (As(V)), monomethylarsonate (MMA(V)), and dimethylarsinate (DMA(V)) by the model plant Tropaeolum majus. In contrast to existing extraction methods hazardous additives and elaborate procedures to enhance the extraction yields were omitted. The proposed protocol is suited to down-scale the sample sizes used for the extractions and to promote a compartmentally resolved analysis of the arsenic distribution within individual leaves, leaf stalks, and stems instead of the conventional extraction of pooled samples. In a two-step extraction, the high extraction efficiencies (85-92%) for arsenic achieved by phosphate buffer from larger amounts (200mg) of homogenized leaf material in a one-step extraction, could be enhanced to 94-100% in a second extraction step. A strong dependence of the arsenic extractability on the type of arsenic species accumulated in the tissue as well as on the type of the tissue (leaf, leaf stalk, stem) was found. For the extraction of 5mm long segments cut from individual leaves without previous homogenization of the plant parts yields between 75 and 93% depending on arsenic species prevailing in the cells were obtained using 1 or 10mM phosphate buffer. The total extraction and analysis protocol was validated using a standard reference material as well as by spiking experiments. The arsenic species analysis by IC/ICPMS revealed a number of nine unidentified metabolites in the plant extracts in addition to the species MMA(V), DMA(V), As(III), and As(V) that were provided to the plants during their growth phase.  相似文献   

3.
Inorganic arsenic is methylated in the mammalian body to methylarsonic acid (MMA), dimethylarsinic acid (DMA) and trimethylarsine oxide (TMA). To achieve a more precise understanding of arsenic carcinogenicity, we examined the genotoxic effects of organic arsenic compounds on human lymphocytes by assessing induction of mitotic arrest, sister chromatid exchange (SCE) and aneuploidy. MMA, DMA and TMA arrested mitosis, DMA induced hyperdiploid cells, and DMA and TMA induced tetraploid cells. Of the three arsenic metabolites tested, DMA had the strongest effects on cell mitosis and aneuploidy induction. DMA arrested mitosis and induced c-mitosis significantly. These results suggest that DMA arrests mitosis and induces aneuploidy through spindle disruptions similar to those observed with known spindle poisons, such as colchicine or vinblastine. Since aneuploidy has been thought to be associated with tumor induction or neoplastic transformation, induction of aneuploidy by organic metabolites of arsenic may play a major role in arsenic carcinogenesis in humans. © 1997 John Wiley & Sons, Ltd.  相似文献   

4.
Le XC  Cullen WR  Reimer KJ 《Talanta》1993,40(2):185-193
An analytical method based on microwave decomposition and flow injection analysis (FIA) coupled to hydride generation atomic absorption spectrometry (HGAAS) is described. This is used to differentiate arsenite [As(III)], arsenate [As(V)], monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) from organoarsenic compounds usually present in seafood. Without microwave digestion, direct analysis of urine by HGAAS gives the total concentration of As(III), As(V), MMA and DMA because organoarsenic compounds such as arsenobetaine, usually found in most seafood, are not reducible upon treatment with borohydride and therefore cannot be determined by using the hydride generation technique. The microwave oven digestion procedure with potassium persulfate and sodium hydroxide as decomposition reagents completely decomposes all arsenicals to arsenate and this can be measured by HGASS. Microwave decomposition parameters were studied to achieve efficient decomposition and quantitative recovery of arsenobetaine spiked into urine samples. The method is applied to the determination of urinary arsenic and is useful for the assessment of occupational exposure to arsenic without intereference from excess organoarsenicals due to the consumption of seafood. Analysis of urine samples collected from an individual who ingested some seafood revealed that organoarsenicals were rapidly excreted in urine. After the ingestion of a 500-g crab, a 10-fold increase of total urinary arsenic was observed, due to the excretion of organoarsenicals. The maximum arsenic concentration was found in the urine samples collected approximately between 4 to 17 hr after eating seafood. However, the ingestion of organoarsenic-containing seafoods such as crab, shrimp and salmon showed no effect on the urinary excretion of inorganic arsenic, MMA and DMA.  相似文献   

5.
A sequential arsenic extraction method was developed that yielded extraction efficiencies (EE) that were approximately double those using current methods for terrestrial plants. The method was applied to plants from two arsenic contaminated sites and showed potential for risk assessment studies. In the method, plants were extracted first by 1:1 water-methanol followed by 0.1 M hydrochloric (HCl) acid. Total arsenic in plant and soil samples collected from contaminated sites was mineralized by acid digestion and detected by inductively coupled plasma-atomic emission spectrometry (ICP-AES) and hydride generation-atomic absorption spectrometry (HG-AAS). Arsenic speciation was done by high performance liquid chromatography coupled with HG-AAS (HPLC-HGAAS) and by HPLC coupled with ICP-mass spectrometry (HPLC-ICP-MS). Spike recovery experiments with arsenite (As(III)), arsenate (As(V)), methylarsonic acid (MA) and dimethylarsinic acid (DMA) showed stability of the species in the extraction processes. Speciation analysis by X-ray absorption near edge spectroscopy (XANES) demonstrated that no transformation of As(III) and As(V) occurred due to sample handling. Dilute HCl was efficient in extracting arsenic from plants; however, extraction and determination of organic species were difficult in this medium. Sequential extraction with 1:1 water-methanol followed by 0.1 M-HCl was most useful in extracting and speciating both organic and inorganic arsenic from plants. Trace amounts of MA and DMA in plants could be detected by HPLC-HGAAS aided by the process of separation and preconcentration of the sequential extraction method. Both organic and inorganic arsenic compounds could be detected simultaneously in synthetic gastric fluid extracts (GFE) but EEs by this method were lower than those of the sequential method. The developed sequential method was shown to be reliable and applicable to various terrestrial plants for arsenic extraction and speciation.  相似文献   

6.
Eight extraction agents (water, methanol–water mixtures in various ratios, methanol, a 20 mmol l?1 ammonium phosphate buffer, and a methanol–phosphate buffer) were tested for the extraction of arsenic compounds from fruits, stems + leaves, and roots of pepper plants grown on soil containing 17.2 mg kg?1 of total arsenic. The arsenic compounds in the extracts were determined using high‐performance liquid chromatography–hydride generation inductively coupled plasma mass spectrometry. Whereas pure water was the most effective extraction agent for fruits (87 ± 3.3% extraction yield) and roots (96 ± 0.6% extraction yield), the 20 mM ammonium phosphate buffer at pH 6 extracted about 50% of the arsenic from stems + leaves. Decreasing extractability of the arsenic compounds was observed with increasing methanol concentrations for all parts of the pepper plant. In pepper fruits, arsenic(III), arsenic(V), and dimethylarsinic acid (DMA) were present (25%, 37%, and 39% respectively of the extractable arsenic). Arsenic(V) was the major compound in stems + leaves and roots (63% and 53% respectively), followed by arsenic(III) representing 33% and 42% respectively, and small amounts (not exceeding 5%) of DMA and methylarsonic acid were also detected. Hence, for a quantitative extraction of arsenic compounds from different plant tissues the extractant has to be optimized individually. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
Humans are exposed via air, water and food to a number of different arsenic compounds, the physical, chemical, and toxicological properties of which may vary considerably. In people eating much fish and shellfish the intake of organic arsenic compounds, mainly arsenobetaine, may exceed 1000 μg As per day, while the average daily intake of inorganic arsenic is in the order of 10–20 μg in most countries. Arsenobetaine, and most other arsenic compounds in food of marine origin, e.g. arsenocholine, trimethylarsine oxide and methylarsenic acids, are rapidly excreted in the urine and there seem to be only minor differences in metabolism between animal species. Trivalent inorganic arsenic (AsIII) is the main form of arsenic interacting with tissue constituents, due to its strong affinity for sulfhydryl groups. However, a substantial part of the absorbed AsIII is methylated in the body to less reactive metabolities, methylarsonic acid (MMA) and dimethylarsinic acid (DMA), which are rapidly excreted in the urine. All the different steps in the arsenic biotransformation in mammals have not yet been elucidated, but it seems likely that the methylation takes place mainly in the liver by transfer of methyl groups from S-adenosylmethionine to arsenic in its trivalent oxidation state. A substantial part of absorbed arsenate (AsV) is reduced to AsIII before being methylated in the liver. There are marked species differences in the methylation of inorganic arsenic. In most animal species DMA is the main metabolite. Compared with human subjects, very little MMA is produced. The marmoset monkey is the only species which has been shown unable to methylate inorganic arsenic. In contrast to other species, the rat shows a marked binding of DMA to the hemoglobin, which results in a low rate of urinary excretion of arsenic.  相似文献   

8.
Arsenic compounds including arsenous acid (As(III)), arsenic acid (As(V)), dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) were separated by high-performance liquid chromatography (HPLC) and detected by inductively coupled plasma mass spectrometry (ICP-MS). A Hamilton PRX-100 anionic-exchange column and a pH 8.5 K2HPO4/KH2PO4 5.0 × 10−3 mol L−1 mobile phase were used to achieve arsenic speciation. The separation of arsenic species provided peaks of As(III) at 2.75 min, DMA at 3.33 min, MMA at 5.17 min and As(V) at 12.5 min. The detection limits, defined as three times the standard deviation of the lowest standard measurements, were found to be 0.2, 0.2, 0.3 and 0.5 ng mL−1 for As(III), DMA, MMA and As(V), respectively. The relative standard deviation values for a solution containing 5.0 μg L−1 of As(III), DMA, MMA and As(V) were 1.2, 2.1, 2.5 and 3.0%, respectively. This analytical procedure was applied to the speciation of arsenic compounds in drinking (soft drink, beer, juice) samples. The validation of the procedure was achieved through the analysis of arsenic compounds in water and sediment certified reference materials.  相似文献   

9.
Total urinary arsenic determinations are often used to assess occupational exposure to inorganic arsenic. Ingestion of sea food can increase the normal background levels of total arsenic in urine by up to an order of magnitude, but this arsenic has relatively little toxicity; it is tightly bound as arsenobetaine. The excretion of inorganic arsenic and its metabolites dimethylarsenic acid (DMA) and monomethylarsonic acid (MMA) is not influenced by the consumption of arsenic from sea food. Specific measurements of DMA, MMA and inorganic arsenic provide a more reliable indicator or exposure than total urinary arsenic levels. An automated atomic absorption method involving high-performance liquid chromatographic separation of the arsenic species and continuous hydride generation is described for the determination of arsenite, arsenate, DMA and MMA at μg As l?1 levels. The method is used to study normal urinary arsenic levels in laboratory staff and arsenic excretion by exposed workers.  相似文献   

10.
Arsenic contamination of groundwater has long been reported in the Mushidabad district of West Bengal, India. We visited 13 arsenic‐affected families in the Makrampur village of the Beldanga block in Mushidabad during 18–21 December 2001 and collected five shallow tubewell‐water samples used general household purposes, four deep tubewell‐water samples used for drinking and cooking purposes, and 44 urine samples from those families. The arsenic concentrations in the five shallow tubewell‐water samples ranged from 18.0 to 408.4 ppb and those in the four deep tubewell‐water samples were from 5.2 to 9.6 ppb. The average arsenite (arsenic(III)), dimethylarsinic acid (DMA), monomethylarsonic acid (MMA) and arsenate (arsenic(V)) in urine were 28.7 ng mg?1, 168.6 ng mg?1, 25.0 ng mg?1 and 4.6 ng mg?1 creatinine respectively. The average total arsenic was 227.0 ng mg?1 creatinine. On comparison of the ratio of (MMA + DMA) to total arsenic, the average proportion was 86.7 ± 9.2% (mean plus/minus to residual standard deviation, n = 43). The exception was data for one boy, whose proportion was 8.0%. One woman excreted the highest total arsenic, at 2890.0 ng mg?1 creatinine. When using 43 of the urine samples (the exception being the one sample obtained from the boy) there were significantly positive correlations (p < 0.01) between arsenic(III) and MMA, between arsenic(III) and DMA and between MMA and DMA. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
Replacement of one anion from goethite with another provides useful insight into the irreversible adsorption of the first added anion in a binary system. The objective of this study was to investigate the irreversible adsorption of dimethylarsinate (DMA), monomethylarsonate (MMA), arsenate, and phosphate onto goethite at pH 4 in phosphate and arsenic binary systems by adding two anions sequentially. The density of irreplaceable phosphate or arsenic on goethite decreases to a limit with an increase in the initial concentration of the other anion. This limit is the density of MMA, arsenate, and phosphate that irreversibly adsorbs onto goethite, which depends on the adsorption density of these species in the adsorption phase. The highest limit of phosphate that cannot be replaced with DMA, MMA, and arsenate is respectively 1.9, 0.5, 0.8 micromol m(-2). The limit of irreplaceable DMA is zero, and the highest limit of irreplaceable MMA and arsenate is 0.9 and 1.1 micromol m(-2), respectively. The results indicate that the irreversible adsorption of one specific anion in arsenic and phosphate binary systems is affected not only by the adsorption density of this anion before the addition of the other anion but also by the nature of the other.  相似文献   

12.
Arsenic present at 1 μg L–1 concentrations in seawater can exist as the following species: As(III), As(V), monomethylarsenic, dimethylarsenic and unknown organic compounds. The potential of the continuous flow injection hydride generation technique coupled to atomic absorption spectrometry (AAS) was investigated for the speciation of these major arsenic species in seawater. Two different techniques were used. After hydride generation and collection in a graphite tube coated with iridium, arsenic was determined by AAS. By selecting different experimental hydride generation conditions, it was possible to determine As(III), total arsenic, hydride reactive arsenic and by difference non-hydride reactive arsenic. On the other hand, by cryogenically trapping hydride reactive species on a chromatographic phase, followed by their sequential release and AAS in a heated quartz cell, inorganic As, MMA and DMA could be determined. By combining these two techniques, an experimental protocol for the speciation of As(III), As(V), MMA, DMA and non-hydride reactive arsenic species in seawater was proposed. The method was applied to seawater sampled at a Mediterranean site and at an Atlantic coastal site. Evidence for the biotransformation of arsenic in seawater was clearly shown.  相似文献   

13.
The toxicity of inorganic trivalent arsenic for living organisms is reduced by in vivo methylation of the element. In man, this biotransformation leads to the synthesis of monomethylarsonic (MMA) and dimethylarsinic (DMA) acids, which are efficiently eliminated in urine along with the unchanged form (Asi). In order to document the methylation process in humans, the kinetics of Asi, MMA and DMA elimination were studied in volunteers given a single dose of one of these three arsenicals or repeated doses of Asi. The arsenic methylation efficiency was also assessed in subjects acutely intoxicated with arsenic trioxide (As2O3) and in patients with liver diseases. Several observations in humans can be explained by the properties of the enzymic systems involved in the methylation process which we have characterized in vitro and in vivo in rats as follows: (1) production of Asi metabolites is catalyzed by an enzymic system whose activity is highest in liver cytosol; (2) different enzymic activities, using the same methyl group donor (S-adenosylmethionine), lead to the production of mono- and di-methylated derivatives which are excreted in urine as MMA and DMA; (3) dimethylating activity is highly sensitive to inhibition by excess of inorganic arsenic; (4) reduced glutathione concentration in liver moderates the arsenic methylation process through several mechanisms, e.g. stimulation of the first methylation reaction leading to MMA, facilitation of Asi uptake by hepatocytes, stimulation of the biliary excretion of the element, reduction of pentavalent forms before methylation, and protection of a reducing environment in the cells necessary to maintain the activity of the enzymic systems.  相似文献   

14.
The effect of seasonal temperature change on the release of methylated arsenic from macroalgae, phytoplankton and sediment porewaters has been investigated by a series of controlled laboratory experiments. The appearance of dissolved arsenic species in the overlying waters was monitored using a coupled hydride generation/GC AA analytical technique. The liberation of dissolved arsenic species by the macroalgae Ascophyllum nodosum was examined under estuarine conditions at 5 °C and 15 °C. At the lower temperature the release rates were 0.2 μg kg?1 h?1 (wet weight of material) for monomethylarsenic (MMA) and 0.5 μg kg?1 h?1 for dimethylarsenic (DMA), whereas at 15 °C the rates were 0.4 μg kg?1 h?1 and 3.2 μg kg?1h?1, respectively. Incubation experiments were also carried out at 15 °C using the diatom Skeletonema costatum. During the log growth phase, when chlorophyll a concentrations were in the range 1-5 μg dm?3, the rate of appearance of DMA in the water was ~3 ng dm?3 h?1. Sediment samples from the freshwater and seawater end-members of the Tamar Estuary, UK, were incubated under natural conditions at 5 °C and 15 °C. The freshwater sediments released DMA in preference to MMA; the concentrations of both species increased exponentially and reached a steady state in the overlying water after 250 h. Considerably more DMA was produced at 15 °C than at 5 °C, whilst the amount of MMA produced appeared to be insensitive to the temperature increase. In contrast, the seawater sediments always produced more MMA than DMA and the increase in temperature had little effect on the production of either MMA or DMA. The results of the laboratory experiments were compared with field observations in temperate estuaries, including the Tamar Estuary. The implications of changes of water temperature on the fate of arsenic in estuaries is discussed and modifications to the estuarine arsenic cycle are proposed.  相似文献   

15.
Kitagawa F  Shiomi K  Otsuka K 《Electrophoresis》2006,27(11):2233-2239
CE with indirect UV and mass-spectrometric detection was used for the simultaneous determination of arsenic acid (As(V)), arsenous acid (As(III)), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), trimethylarsine oxide (TMAO), tetramethylarsonium ion (TMA(+)), arsenobetaine (AB), and arsenocholine (AC). In the CE-indirect UV analysis, a baseline separation of arsenic species was successfully achieved by using a basic background solution (BGS) for anions and an acidic BGS for cations, respectively. The LOD values in CE-indirect UV for the individual analytes were 7.8, 12.5, 7.8, 12.5, 62.5, 125, 250, and 62.5 ppm, respectively. To achieve sensitive and selective analysis, CE coupled with ESI-MS was applied to the determination of arsenic compounds. The organic arsenic species were successfully separated with a higher sensitivity by CE-MS using the acidic BGS. The LODs in CE-MS for MMA, DMA, TMAO, TMA(+), AB, and AC were 1.0, 0.1, 0.01, 0.1, 0.01, and 0.01 ppm, respectively. In contrast, the analysis of inorganic arsenic species (As(V) and As(III)) resulted in a lower detectability in CE-MS compared to that obtained with the CE-indirect UV analysis. However, the speciation of eight arsenics by CE-MS was successfully achieved in a single run by switching the ESI polarity during MS detection.  相似文献   

16.
Arsenic present at 1 microg L(-1) concentrations in seawater can exist as the following species: As(III), As(V), monomethylarsenic, dimethylarsenic and unknown organic compounds. The potential of the continuous flow injection hydride generation technique coupled to atomic absorption spectrometry (AAS) was investigated for the speciation of these major arsenic species in seawater. Two different techniques were used. After hydride generation and collection in a graphite tube coated with iridium, arsenic was determined by AAS. By selecting different experimental hydride generation conditions, it was possible to determine As(III), total arsenic, hydride reactive arsenic and by difference non-hydride reactive arsenic. On the other hand, by cryogenically trapping hydride reactive species on a chromatographic phase, followed by their sequential release and AAS in a heated quartz cell, inorganic As, MMA and DMA could be determined. By combining these two techniques, an experimental protocol for the speciation of As(III), As(V), MMA, DMA and nonhydride reactive arsenic species in seawater was proposed. The method was applied to seawater sampled at a Mediterranean site and at an Atlantic coastal site. Evidence for the biotransformation of arsenic in seawater was clearly shown.  相似文献   

17.
Reactive supercritical fluid extraction has been used for the speciation of organic (DMA and MMA) and inorganic (As(III) and As(V)) arsenic compounds in solid samples. Derivatization with thioglycolic acid methylester (TGM) was performed in supercritical carbon dioxide. Different extraction conditions have been tested. The arsenic derivatives have been analyzed by GC. A capillary-SFC method was evaluated for the analysis of the TGM derivatives and compared with GC.Dedicated to Professor Dr. Dieter Klockow on the occasion of his 60th birthday  相似文献   

18.
Health risk associated with dietary arsenic intake may be different for infants and adults. Seafood is the main contributor to arsenic intake for adults while terrestrial-based food is the primary source for infants. Processed infant food products such as rice-based cereals, mixed rice/formula cereals, milk-based infant formula, applesauce and puree of peaches, pears, carrots, sweet potatoes, green beans, and squash were evaluated for total and speciated arsenic content. Arsenic concentrations found in rice-based cereals (63-320 ng/g dry weight) were similar to those reported for raw rice. Results for the analysis of powdered infant formula by inductively coupled plasma-mass spectrometry (ICP-MS) indicated a narrow and low arsenic concentration range (12 to 17 ng/g). Arsenic content in puree infant food products, including rice cereals, fruits, and vegetables, varies from <1 to 24 ng/g wet weight. Sample treatment with trifluoroacetic acid at 100 degrees C were an efficient and mild method for extraction of arsenic species present in different food matrixes as compared to alternative methods that included sonication and accelerated solvent extraction. Extraction recoveries from 94 to 128% were obtained when the summation of species was compared to total arsenic. The ion chromatography (IC)-ICP-MS method selected for arsenic speciation allowed for the quantitative determination of inorganic arsenic [As(III) + As(V)], dimethylarsinic acid (DMA), and methylarsonic acid (MMA). Inorganic arsenic and DMA are the main species found in rice-based and mixed rice/formula cereals, although traces of MMA were also detected. Inorganic arsenic was present in freeze-dried sweet potatoes, carrots, green beans, and peaches. MMA and DMA were not detected in these samples. Arsenic species in squash, pears, and applesauce were not detected above the method detection limit [5 ng/g dry weight for As(III), MMA, and DMA and 10 ng/g dry weight for As(V)].  相似文献   

19.
Neutron activation analysis (NAA) in combination with mainly high-performance liquid chromatography (HPLC) has been developed for the determination of low levels of five arsenic species, namely As(III), As(V), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), and arsenobetaine (AsB) in water samples. Organically bound arsenic (OBAs) and total arsenic have also been determined. In addition to anion-exchange HPLC, solid phase extraction and open-column cation-exchange chromatographic methods have also been used. The detection limits of the method have been found to be 0.005 ng·cm−3 for OBAs, 0.02 ng·cm−3 for AsB, DMA, MMA, As(III), and As(V) and 0.12 ng·cm−3 for total arsenic. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
CZE for the speciation of arsenic in aqueous soil extracts   总被引:2,自引:0,他引:2  
We developed two separation methods using CZE with UV detection for the determination of the most common inorganic and methylated arsenic species and some phenylarsenic compounds. Based on the separation method for anions using hydrodynamic sample injection the detection limits were 0.52, 0.25, 0.27, 0.12, 0.37, 0.6, 0.6, 1.2 and 1.0 mg As/L for phenylarsine oxide (PAO), p-aminophenylarsonic acid (p-APAA), o-aminophenylarsonic (o-APAA), phenylarsonic acid (PAA), 4-hydroxy-3-nitrobenzenearsonic acid (roxarsone), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenite or arsenious acid (As(III)) and arsenate (As(V)), respectively. These detection limits were improved by large-volume sample stacking with polarity switching to 32, 28, 14, 42, 22, 27, 26 and 27 microg As/L for p-APAA, o-APAA, PAA, roxarsone, MMA, DMA, As(III) and As(V), respectively. We have applied both methods to the analysis of the arsenic species distribution in aqueous soil extracts. The identification of the arsenic species was validated by means of both standard addition and comparison with standard UV spectra. The comparison of the arsenic species concentrations in the extracts determined by CZE with the total arsenic concentrations measured by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) indicated that CZE is suited for the speciation of arsenic in environmental samples with a high arsenic content. The extraction yield of phenylarsenic compounds from soil was derived from the arsenic concentrations of the aqueous soil extracts and the total arsenic content of the soil determined by ICP-AES after microwave digestion. We found that 6-32% of the total amount of arsenic in the soil was extractable by a one-step extraction with water in dependence on the type of arsenic species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号