首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The least-squares solution and the least-squares symmetric solution with the minimum-norm of the matrix equations AX = B and XC = D are considered in this paper. By the matrix differentiation and the spectral decomposition of matrices, an explicit representation of such solution is given.  相似文献   

2.
In this article we give some formulas for the maximal and minimal ranks of the submatrices in a least squares solution X to AXB = C. From these formulas, we derive necessary and sufficient conditions for the submatrices to be zero and other special forms, respectively. Finally, some Hermitian properties for least squares solution to matrix equation AXB = C are derived.  相似文献   

3.
In this article, we consider common Re-nnd and Re-pd solutions of the matrix equations AX = C and XB = D with respect to X, where A, B, C and D are given matrices. We give necessary and sufficient conditions for the existence of common Re-nnd and Re-pd solutions to the pair of the matrix equations and derive a representation of the common Re-nnd and Re-pd solutions to these two equations when they exist. The presented examples show the advantage of the proposed approach.  相似文献   

4.
Nonlinear matrix equation Xs + AXtA = Q, where A, Q are n × n complex matrices with Q Hermitian positive definite, has widely applied background. In this paper, we consider the Hermitian positive definite solutions of this matrix equation with two cases: s ? 1, 0 < t ? 1 and 0 < s ? 1, t ? 1. We derive necessary conditions and sufficient conditions for the existence of Hermitian positive definite solutions for the matrix equation and obtain some properties of the solutions. We also propose iterative methods for obtaining the extremal Hermitian positive definite solution of the matrix equation. Finally, we give some numerical examples to show the efficiency of the proposed iterative methods.  相似文献   

5.
The matrix equation AX = B with PX = XP and XH = sX constraints is considered, where P is a given Hermitian involutory matrix and s = ±1. By an eigenvalue decomposition of P, we equivalently transform the constrained problem to two well-known constrained problems and represent the solutions in terms of the eigenvectors of P. Using Moore-Penrose generalized inverses of the products generated by matrices A, B and P, the involved eigenvectors can be released and eigenvector-free formulas of the general solutions are presented. Similar strategy is applied to the equations AX = B, XC = D with the same constraints.  相似文献   

6.
In this paper, the nonlinear matrix equation X + AXqA = Q (q > 0) is investigated. Some necessary and sufficient conditions for existence of Hermitian positive definite solutions of the nonlinear matrix equations are derived. An effective iterative method to obtain the positive definite solution is presented. Some numerical results are given to illustrate the effectiveness of the iterative methods.  相似文献   

7.
Two perturbation estimates for maximal positive definite solutions of equations X + A*X−1A = Q and X − A*X−1A = Q are considered. These estimates are proved in [Hasanov et al., Improved perturbation Estimates for the Matrix Equations X ± A*X−1A = Q, Linear Algebra Appl. 379 (2004) 113-135]. We derive new perturbation estimates under weaker restrictions on coefficient matrices of the equations. The theoretical results are illustrated by numerical examples.  相似文献   

8.
This paper reviews the equations ax = c and xb = d from a new perspective by studying them in the setting of associative rings with or without involution. Results for rectangular matrices and operators between different Banach and Hilbert spaces are obtained by embedding the ‘rectangles’ into rings of square matrices or rings of operators acting on the same space. Necessary and sufficient conditions using generalized inverses are given for the existence of the hermitian, skew-hermitian, reflexive, antireflexive, positive and real-positive solutions, and the general solutions are described in terms of the original elements or operators. New results are obtained, and many results existing in the literature are recovered and corrected.  相似文献   

9.
In this paper, an iterative algorithm is constructed to solve the minimum Frobenius norm residual problem: min over bisymmetric matrices. By this algorithm, for any initial bisymmetric matrix X0, a solution X* can be obtained in finite iteration steps in the absence of roundoff errors, and the solution with least norm can be obtained by choosing a special kind of initial matrix. Furthermore, in the solution set of the above problem, the unique optimal approximation solution to a given matrix in the Frobenius norm can be derived by finding the least norm bisymmetric solution of a new corresponding minimum Frobenius norm problem. Given numerical examples show that the iterative algorithm is quite effective in actual computation.  相似文献   

10.
This note studies the iterative solutions to the coupled Sylvester-transpose matrix equation with a unique solution. By using the hierarchical identification principle, an iterative algorithm is presented for solving this class of coupled matrix equations. It is proved that the iterative solution consistently converges to the exact solution for any initial values. Meanwhile, sufficient conditions are derived to guarantee that the iterative solutions given by the proposed algorithm converge to the exact solution for any initial matrices. Finally, a numerical example is given to illustrate the efficiency of the proposed approach.  相似文献   

11.
It is well known that the least‐squares QR‐factorization (LSQR) algorithm is a powerful method for solving linear systems Ax = b and unconstrained least‐squares problem minx | | Ax ? b | | . In the paper, the LSQR approach is developed to obtain iterative algorithms for solving the generalized Sylvester‐transpose matrix equation the minimum Frobenius norm residual problem and the periodic Sylvester matrix equation Numerical results are given to illustrate the effect of the proposed algorithms. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
The extremal ranks of matrix expression of A − BXC with respect to XH = X have been discussed by applying the quotient singular value decomposition Q-SVD and some rank equalities of matrices in this paper.  相似文献   

13.
We consider the nonlinear dispersive K(m,n) equation with the generalized evolution term and derive analytical expressions for some conserved quantities. By using a solitary wave ansatz in the form of sechp function, we obtain exact bright soliton solutions for (2 + 1)-dimensional and (3 + 1)-dimensional K(m,n) equations with the generalized evolution terms. The results are then generalized to multi-dimensional K(m,n) equations in the presence of the generalized evolution term. An extended form of the K(m,n) equation with perturbation term is investigated. Exact bright soliton solution for the proposed K(m,n) equation having higher-order nonlinear term is determined. The physical parameters in the soliton solutions are obtained as function of the dependent model coefficients.  相似文献   

14.
15.
16.
A matrix ARn×n is called a bisymmetric matrix if its elements ai,j satisfy the properties ai,j=aj,i and ai,j=an-j+1,n-i+1 for 1?i,j?n. This paper considers least squares solutions to the matrix equation AX=B for A under a central principal submatrix constraint and the optimal approximation. A central principal submatrix is a submatrix obtained by deleting the same number of rows and columns in edges of a given matrix. We first discuss the specified structure of bisymmetric matrices and their central principal submatrices. Then we give some necessary and sufficient conditions for the solvability of the least squares problem, and derive the general representation of the solutions. Moreover, we also obtain the expression of the solution to the corresponding optimal approximation problem.  相似文献   

17.
The phase I maximum flow and most positive cut methods are used to solve the feasibility problem. Both of these methods take one maximum flow computation. Thus the feasibility problem can be solved using maximum flow algorithms. Let n and m be the number of nodes and arcs, respectively. In this paper, we present an algorithm to solve the feasibility problem with integer lower and upper bounds. The running time of our algorithm is O(mn log (nU)), where U is the value of maximum upper bound. Our algorithm improves the O(m2 log (nU))-time algorithm in [12]. Hence the current algorithm improves the running time in [12] by a factor of n. Sleator and Goldberg’s algorithm is one of the well-known maximum flow algorithms, which runs in O(mn log n) time, see [5]. Under similarity assumption [11], our algorithm runs in O(mn log n) time, which is the running time of Sleator and Goldberg’s algorithm. The merit of our algorithm is that, in the case of infeasibility of the given network, it not only diagnoses infeasibility but also presents some information that is useful to modeler in estimating the maximum cost of adjusting the infeasible network.  相似文献   

18.
Let H(B) denote the space of all holomorphic functions on the unit ball B of Cn. Let φ be a holomorphic self-map of B and g ∈ H(B) such that g(0) = 0. In this paper, we investigate the boundedness and compactness of the generalized composition operator
  相似文献   

19.
This paper develops a gradient based and a least squares based iterative algorithms for solving matrix equation AXB + CXTD = F. The basic idea is to decompose the matrix equation (system) under consideration into two subsystems by applying the hierarchical identification principle and to derive the iterative algorithms by extending the iterative methods for solving Ax = b and AXB = F. The analysis shows that when the matrix equation has a unique solution (under the sense of least squares), the iterative solution converges to the exact solution for any initial values. A numerical example verifies the proposed theorems.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号