首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The first and second Maurer-Cartan structure relations are combined with the Evans field equation [1] for differential forms to build a grand unified field theory based on differential geometry. The tetrad or vielbein plays a central role in this theory, and all four fields currently thought to exist in nature can be described by the same equations, the tangent space index of the tetrad in general relativity being identified with the tetrad's internal (gauge group) index guage theory.  相似文献   

2.
A rigorous proof is given of the Evans lemma of general relativity and differential geometry. The lemma is the subsidiary proposition leading to the Evans wave equation and proves that the eigenvalues of the d'Alembertian operator, acting on any differential form, are scalar curvatures. The Evans wave equation shows that the eigenvalues of the d'Alembertian operator, acting on any differential form, are eigenvalues of the index-contracted canonical energy momentum tensor T multiplied by the Einstein constant k. The lemma is a rigorous and general result in differential geometry, and the wave equation is a rigorous and general result for all radiated and matter fields in physics. The wave equation reduces to the main equations of physics in the appropriate limits, and unifies the four types of radiated fields thought to exist in nature: gravitational, electromagnetic, weak and strong.  相似文献   

3.
No Heading The Evans wave equation is derived from the appropriate Lagrangian and action, identifying the origin of the Planck constant in general relativity. The classical Fermat principle of least time, and the classical Hamilton principle of least action, are expressed in terms of a tetrad multiplied by a phase factor exp(iS/), where S is the action in general relativity. Wave (or quantum) mechanics emerges from these classical principles of general relativity for all matter and radiation fields, giving a unified theory of quantum mechanics based on differential geometry and general relativity. The phase factor exp(iS/) is an eigenfunction of the Evans wave equation and is the origin in general relativity and geometry of topological phase effects in physics, including the Aharonov-Bohm class of effects, the Berry phase, the Sagnac effect, related interferometric effects, and all physical optical effects through the Evans spin field B(3) and the Stokes theorem in differential geometry. The Planck constant is thus identified as the least amount possible of action or angular momentum or spin in the universe. This is also the origin of the fundamental Evans spin field B(3), which is always observed in any physical optical effect. It originates in torsion, spin and the second (or spin) Casimir invariant of the Einstein group. Mass originates in the first Casimir invariant of the Einstein group. These two invariants define any particle.  相似文献   

4.
The argument for non-existence of the B (3) field proposed by E. Comay is based on adding radians to the phase of a plane wave. This is trivially incorrect because B (3) is a vacuum component of a C conserving Yang-Mills gauge field theory.  相似文献   

5.
The inverse Faraday effect is described from the first principles of general relativity, using the irreducible representations of the Einstein group.  相似文献   

6.
A generally covariant field equation is developed for gravitation and electromagnetism by considering the metric vector q in curvilinear, non-Euclidean spacetime. The field equation is
, where T is the canonical energy-momentum four-vector, k the Einstein constant, R the curvature four-vector, and R the Riemann scalar curvature. It is shown that this equation can be written as
where is a coefficient defined in terms of R, k, and the scale factors of the curvilinear coordinate system. Gravitation is described through the Einstein field equation, which is recovered by multiplying both sides by q . Generally covariant electromagnetism is described by multiplying the foregoing on both sides by the wedge q . Therefore, gravitation is described by symmetric metricq q and electromagnetism by the anti-symmetric defined by the wedge product q q .  相似文献   

7.
The archetypical and phaseless vacuum magnetic flux density of O(3) electrodynamics, the B (3) field, is derived from the irreducible representation of the Einstein group and is shown to be accompanied by a vacuum energy density which depends directly on the square of the scalar curvature R of curved spacetime. The B (3) field and the vacuum energy density are obtained respectively from the non-Abelian part of the field tensor F and the non-Abelian part of the metrical field equation. Both of these terms are given by Sachs [5].  相似文献   

8.
A generally covariant wave equation is derived geometrically for grand unified field theory. The equation states most generally that the covariant d'Alembertian acting on the vielbein vanishes for the four fields which are thought to exist in nature: gravitation, electromagnetism, weak field and strong field. The various known field equations are derived from the wave equation when the vielbein is the eigenfunction. When the wave equation is applied to gravitation the wave equation is the eigenequation of wave mechanics corresponding to Einstein's field equation in classical mechanics, the vielbein eigenfunction playing the role of the quantized gravitational field. The three Newton laws, Newton's law of universal gravitation, and the Poisson equation are recovered in the classical and nonrelativistic, weak-field limits of the quantized gravitational field. The single particle wave-equation and Klein-Gordon equations are recovered in the relativistic, weak-field limit of the wave equation when scalar components are considered of the vielbein eigenfunction of the quantized gravitational field. The Schrödinger equation is recovered in the non-relativistec, weak-field limit of the Klein-Gordon equation). The Dirac equation is recovered in this weak-field limit of the quantized gravitational field (the nonrelativistic limit of the relativistic, quantezed gravitational field when the vielbein plays the role of the spinor. The wave and field equations of O(3) electrodynamics are recovered when the vielbein becomes the relativistic dreibein (triad) eigenfunction whose three orthonormal space indices become identified with the three complex circular indices (1), (2), (3), and whose four spacetime indices are the indices of non-Euclidean spacetime (the base manifold). This dreibein is the potential dreibein of the O(3) electromagnetic field (an electromagnetic potential four-vector for each index (1), (2), (3)). The wave equation of the parity violating weak field is recovered when the orthonormal space indices of the relativistic dreibein eigenfunction are identified with the indices of the three massive weak field bosons. The wave equation of the strong field is recovered when the orthonormal space indices of the relativistic vielbein eigenfunction become the eight indices defined by the group generators of the SU (3) group.  相似文献   

9.
The unification of the gravitational and electromagnetic fields achieved geometrically in the generally covariant unified field theory of Evans implies that electromagnetism is the spinning of spacetime and gravitation is the curving of spacetime. The homogeneous unified field equation of Evans is a balance of spacetime spin and curvature and governs the influence of electromagnetism on gravitation using the first Bianchi identity of differential geometry. The second Bianchi identity of differential geometry is shown to lead to the conservation law of the Evans unified field, and also to a generalization of the Einstein field equation for the unified field. Rigorous mathematical proofs are given in appendices of the four equations of differential geometry which are the cornerstones of the Evans unified field theory: the first and second Maurer-Cartan structure relations and the first and second Bianchi identities. As an example of the theory, the origin of wavenumber and frequency is traced to elements of the torsion tensor of spinning spacetime.  相似文献   

10.
By solving the Diras equation for the motion of an electron (c) in the circularly polarized electromagnetic field it is shown that the intrinsic electron spin forms an interaction Hamiltonian with a time independent fieldB (3) of electromagnetic radiation in the vacuum. In the same way as intrinsic spin is a fundamental property of the electron,B (3) is therefore a fundamental and intrinsic property of the vacuum electromagnetic field.  相似文献   

11.
The emergence of the Evans-Vigier fieldB (3) of vacuum electromagnetism has been accompanied by a novel charge quantization condition inferred from 0(3) gauge theory. This finding is used to derive the de Broglie matter-wave equation from the classical Hamilton-Jacobi (HJ) equation of one electron in the electromagnetic field. The HJ equation is used with the charge quantization condition to show that, in a perfectly elastic photon-electron interaction, complete transfer of angular momentum occurs self-consistently, and the electron acquires the angular momentum of the photon. In this limit the electron travels infinitesimally near the speed of light, and its concomitant electromagnetic fields become indistinguishable from those of the uncharged photon. This result independently proves the validity of the charge quantization condition and demonstrates unequivocally the existence of the vacuum fieldB (3).  相似文献   

12.
Nonlinear optics confronts the U(1) theory of electrodynamics with the dilemma of the existence of nonlinear fields. The U(1) group is completely linear and Abelian and causes consideration of an SU(2) theory of electrodynamics. An SU(2) theory of electrodynamics, with a B 3 magnetic field, means that physics is forced to consider an SU(2) × SU(2) electroweak theory. It is then demonstrated that the B 3 field exists on the physical vacuum defined by the Higgs symmetry breaking of this extended electroweak theory.  相似文献   

13.
It is shown that the longitudinal, magnetic flux density,B (3) , of vacuum electromagnetic radiation can be accommodated rigorously within Noether's theorem, which relates fundamental spacetime symmetries to fundamental conservation laws. This demonstration linksB (3) to the canonical energy-momentum tensorT µv that appears in Einstein's field equations of general relativity. Thus,B (3) provides a link between electromagnetism and gravitation which might eventually lead to an unified understanding of field theory.  相似文献   

14.
No Heading The Evans field equation is solved to give the equations governing the evolution of scalar curvature R and contracted energy-momentum T. These equations show that R and T are always analytical, oscillatory, functions without singularity and apply to all radiated and matter fields from the sub-atomic to the cosmological level. One of the implications is that all radiated and matter fields are both causal and quantized, contrary to the Heisenberg uncertainty principle. The wave equations governing this quantization are deduced from the Evans field equation. Another is that the universe is oscillatory without singularity, contrary to contemporary opinion based on singularity theorems. The Evans field equation is more fundamental than, and leads to, the Einstein field equation as a particular example, and so modifies and generalizes the contemporary Big Bang model. The general force and conservation equations of radiated and matter fields are deduced systematically from the Evans field equation. These include the field equations of electrodynamics, dark matter, and the unified or hybrid field.  相似文献   

15.
By using an 0(3) gauge group, a non-Abelian theory of vacuum electrodynamics is developed in which the newly discovered longitudinal vacuum fieldsB (3) andi E (3) appear self-consistently with the usual plane wavesB (1),B (2),E (1), andE (2) in the circular basis (1), (2), (3), a complex representation of space. Using the charge quantization condition the vacuum Maxwell equations are given in the non-Abelian representation.  相似文献   

16.
The emergence of theB (3) field in vacuo has shown that electromagnetism is non-Abelian and similar in structure to gravitation. In this paper the Christoffel symbol used in general relativity is developed for electromagnetism in curvilinear coordinates: The former becomes describable as the antisymmetric part of the gravitational Ricci tensor. Therefore gravitation and electromagnetism are respectively the symmetric and antisymmetric parts of thesame Ricci tensor within a proportionality factor. Both fields are obtained from the Riemann curvature tensor, both are expressions of curvature in spacetime.  相似文献   

17.
The recent claims by Rajaet al. [1,2] are corrected in this reply. It is shown that there is no Faraday induction due toB (3)in vacuo, as observed by these authors. The observation of the inverse Faraday effect by these authors is an observation of theB (3)field at second order. Their data, correctly interpreted, constitute strong support for the existence and predicted properties of theB (3)field.  相似文献   

18.
The B cyclics of electrodynamics, which relate transverse and longitudinal fields in vacuo, are one photon relations which are also valid on a macroscopic scale. In the same way, the Maxwell equations in the received view were originally phenomenological relations between electric and magnetic fields, but, in the received view are also written down for one photon. Point by point replies to van Enk are given.  相似文献   

19.
By considering the irreducible representations of the Einstein group (the Lie group of general relativity), Sachs [1] has shown that the electromagnetic field tensor can be developed in terms of a metric q , which is a set of four quaternion-valued components of four-vector. Using this method, it is shown that the electromagnetic field vanishes [1] in flat spacetime, and that electromagnetism in general is a non-Abelian field theory. In this paper the non-Abelian component of the field tensor is developed to show the presence of the B (3) field of the O(3) electrodynamics, and the basic structure of O(3) electrodynamics is shown to be a sub-structure of general relativity as developed by Sachs. The extensive empirical evidence for both theories is summarized.  相似文献   

20.
Some logical deficiences in Evans' work on the static magnetic field of the photon are pointed out. Physical consequences of this field are analyzed, from which it is argued that the field does not exist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号