首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
方酸作桥联配体的双核铕螯合物的电致发光   总被引:1,自引:1,他引:1  
利用方酸作为桥联配体合成了一种双核铕鳌合物Eu_2(DBM)_4(Sq)Phen_2 .用TPD作空穴传输材料、Eu_2(DBM)_4(Sq)Phen_2作发光材料和载流子传输材料、 8-羟基喹啉和铝(AlQ)作电子传输材料,设计了不同电致发光电特性,结果表明 Eu_2(DBM)_4(Sq)phen_2是一种同时具有空穴和电子传输能力的红色电致发光 材料,在器件结构为ITO/TPD,50nm/Eu_2(DBM)_4(Sq)Phen2,20nm/ALQ,50nm/LiF, 1nm/Al,200nm时,获得了在16V,6.9mA下有最大亮度91cd/m~2的电致发光器件.  相似文献   

2.
使用中位-四(1-苯基吡唑-4-基)卟啉(TPPyPH2)掺杂空穴传输材料N,N′-二苯基-N,N′-双(4-甲苯基)-1,1′-二苯基-4,4′-二胺(TPD)制备了红色有机电致发光器件.因为TPD的发射光谱与TPPyPH2的吸收光谱具有更大的光谱重叠,为了得到更为有效的从主体材料TPD向红光染料TPPyPH2的能量传递,我们使用TPD代替传统的8-羟基喹啉铝(Alq3)作为主体发光材料.器件在680nm处具有纯的红光发射峰;通过使用Alq3电子传输层以及使用Alq3共掺杂发光层的方法,使器件的发光性能得到了改善,结构为ITO/Alq3+TPPyPH2+TPD(50nm)/Alq3(30nm)/Al的器件的最大发光亮度为177cd/m2.  相似文献   

3.
Electroluminescence (EL) properties of europium (Eu) complex‐doped poly(N‐vinylcarbazole) (PVK) were investigated. A device structure of glass substrate/indium‐tin oxide/hole‐injection layer/Eu complex‐doped PVK/hole‐blocking layer/electron transport layer/electron‐injection layer/Al was employed. Red emission originating from Eu complex was observed. Relatively high luminance of 50 cd/m2 and an efficiency of 0.2% were obtained. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
A novel europium(III) complex, tris(dibenzoylmethanato)(2-4'-triphenylamino)imidazo[4,5-f]1,10-phenanthroline)europium(III), Eu(DBM)3(TPIP), is synthesized. The light-emitting center, hole-transporting triphenylamine and electron-transporting phenanthroline fragments are integrated into one molecule. A single-layer device of ITO/Eu(DBM)3(TPIP) (60 nm)/Mg0.9Ag0.1/Ag exhibits Eu(III)-based pure red emission with a maximum brightness of 19 cd m(-2) at 13.5 V and 280 mA cm(-2), and an onset driving voltage of 8 V. A four-layer device of ITO/TPD (20 nm)/Eu(DBM)3(TPIP) (40 nm)/BCP (20 nm)/AlQ(40 nm)/Mg0.9Ag0.1/Ag gives a maximum Eu(III)-based pure red emitting luminance of 1305 cd m(-2) at 16 V and 255 mA cm(-2) with an onset driving voltage of 6 V; the maximum external quantum yield and luminous yield are estimated to be 0.85% and 1.44 lm W(-1), respectively, at 7.5 V and 0.25 mA cm(-2).  相似文献   

5.
一种双核铕配合物的合成、光致发光和电致发光性质研究   总被引:5,自引:0,他引:5  
合成了一个新的双核铕配合物Eu(TTA)3(tpphz)Eu(TTA)3(其中TTA=去质子化的α-噻吩甲酰三氟丙酮; tpphz=[3,2-a:2',3'-c:3',2'-h:2'',3''-j]四吡啶基吩嗪). 研究了该配合物的光致发光和电致发光性质. 一个四层电致发光器件ITO/TPD, 10 nm/Eu(TTA)3(tpphz)Eu(TTA)3, 20 nm/BCP, 20 nm/AlQ, 40 nm/Mg0.9Ag0.1, 200 nm/Ag, 100 nm表现出中心在633 nm处的宽带红光发射, 该宽带发射可能来源于双核Eu(III)配合物和TPD形成的激基复合物. 该器件的启动电压为10 V, 在18 V和135 mA/cm2时的最大亮度达146 cd/m2.  相似文献   

6.
制备了一种可定性定量检测水溶液中三价铁离子的含铕聚苯乙烯微球, 分别用固体核磁碳谱(13C CP/MAS NMR)、 傅里叶变换红外光谱(FTIR)、 X射线光电子能谱(XPS)、 扫描电子显微镜(SEM)、 透射电子显微镜(TEM)、 元素分析、 粒度分析和ζ电位分析等对其化学组成和结构形貌进行表征. 当铕配合物单体用量低于2.5%时, 可以得到稳定的单分散键合型含铕聚苯乙烯微球. 用紫外光激发时, 该含铕聚苯乙烯微球发射铕离子的特征红光. Fe3+能猝灭该微球的荧光, 酸根离子和其它金属离子对其干扰较少; 猝灭效率与Fe3+浓度在0~300 μmol/L浓度范围内均呈线性关系; 随着铕配合物单体用量的增加, 微球的荧光增强, 其在检测Fe3+的荧光时, 猝灭常数(KSV)增加, 检测限(LOD)下降. 调节铕配合物单体的用量, 可获得热性能优异、 红光发射强度高且稳定性好的单分散聚苯乙烯荧光微球, 对Fe3+荧光检测显示出较高的选择性, 在生物检测和环境保护等领域具有较高的应用价值.  相似文献   

7.
In this paper, the electroluminescent properties of a new partially‐conjugated hyperbranched poly (p‐phenylene vinylene) (HPPV) were studied. The single layer light‐emitting device with HPPV as the emitting layer emits blue‐green light at 496 nm, with a luminance of 160 cd/m2 at 9 V, a turn‐on voltage of 4.3 V and an electroluminescent efficiency of 0.028 cd/A. By doping an electron‐transport material [2‐(4‐biphenylyl)‐5‐phenyl‐1,3,4‐oxadiazole, PBD] into the emitting layer and inserting a thin layer of tris(8‐hydroxy‐quinoline)aluminum (Alq3) as electron transporting/hole blocking layer for the devices, the electroluminescent efficiency of 1.42 cd/A and luminance of 1700 cd/m2 were achieved. The results demonstrate that the devices with the hyperbranched polymers as emitting material can achieve high efficiency through optimization of device structures. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
合成了一种含有载流子传输功能基团咔唑和噁二唑的有机铕(Ⅲ)配合物. 在研究了光致发光等性能的同时, 制备了结构为ITO/NPB(40 nm)/2.5%铕(Ⅲ)配合物: CBP(30 nm)/BCP(10 nm)/Alq3(30 nm)/LiF(1 nm)/Al(100 nm)的电致发光器件, 器件在612 nm处有半峰宽为4 nm的高纯度的明亮红光发射, 起亮电压约为6 V, 在17.3 V时达到最大亮度1778 cd/m2.  相似文献   

9.
Bo  LIANG  Mei  Xiang  ZHU 《中国化学快报》2003,14(1):43-46
Dipyrido[3,2-a:2′,3′-c] phenazine moiety has been introduced as neutral lignad in europium complex.Therefore a new europium complex with saturate emission,strong fluorescnet intensity and good solubility was designed and synthesized for the first time.Its photoluminescence and UV properties were examined.The experimental results showed that this new Eu-complex could be used as red electroluminescnet materials.  相似文献   

10.
Electroluminescent devices were fabricated using plasma-polymerized carbon disulfide films, poly(CS2), and tris(8-quinolinolato)aluminum(III) complex, Alq, as the hole transport layer and the emitting layer, respectively. A cell structure of glass substrate/indium–tin–oxide/poly(CS2/Alq/Mg/Ag) was employed. Smooth hole injection from the electrode through the poly(CS2) layer and concomitant electroluminescence from the Alq layer were observed. Green emission with a luminance of 250 cd/m2 was achieved at a drive voltage of 14 V.  相似文献   

11.
The bilayer organic light-emitting diode(OLED) with a blue fluorescent lanthanum complex, tris(1-phenyl-3-methyl-4-isobutyryl-5-pyrazolone)-(2,2′-dipyridyl) lanthanum [La(PMIP)3(Bipy)], as a light emitting material and N,N′-diphenyl-N,N′-bis(3-methylphenyl)-1,1′-biphenyl-4,4′-diamine(TPD) as a hole transporting material emits bright green light instead of blue light. The data of the absorption, the photoluminescence(PL) and the photoluminescence excitation(PLE) spectra of TPD, La(PMIP)3(Bipy) and the mixture of TPD and La(PMIP)3(Bipy)(molar ratio 1∶1) prove that the electroluminescent emission originates from the exciplex on the interface between TPD and La(PMIP)3(Bipy). By improving device configuration with tris(8-hydroxyquinoline) aluminum(ALQ) as an electron transporting material, a maximum luminance of 800 cd/m2 was obtained.  相似文献   

12.
A novel Re(I) complex with the acenaphtho[1,2-b]pyrazino[2,3-f][1,10]phenanthroline (APPT) ligand Re(APPT)(CO)3Br (abbreviated as Re-APPT) was used to fabricate organic light emitting diodes (OLEDs). From the electroluminescence (EL) spectra of the device at different bias voltages, it could be found that the EL maxima shifted approximately 30 nm. For OLEDs with 5% Re-APPT doped emissive layer, turn-on voltage of 6 V, maximum luminance of 7631 cd/m2 and a current efficiency up to 2.36 cd/A were obtained. We suppose that a direct charge trapping took the dominant position in the EL process. Trapping contributed mostly to this relatively higher luminance.  相似文献   

13.
采用修饰多层LB膜的方法制备了导电聚合物聚-3,4-乙烯二氧噻吩/二十烷酸(PEDOT:AA)复合层状有序膜, 构筑了一种导电聚合物镶嵌的多层有序膜结构. 将这种导电聚合物有序薄膜沉积于ITO电极表面, 将其作为有机电致发光二极管(OLED)的空穴注入层, 并研究了ITO/(PEDOT:AA)/MEH-PPV/Al器件的性能. 研究结果表明, 与采用聚3,4-乙烯二氧噻吩/聚苯乙烯磺酸(PEDOT:PSS)自组装膜和旋涂膜作为空穴注入层的ITO/(PEDOT:PSS)/MEH-PPV/Al器件相比, 器件的发光效率增加, 起亮电压降低. 我们认为这是由于PEDOT:AA薄膜提供了一种有序层状结构后, 减小了ITO与MEH-PPV间的接触势垒, 改善了空穴载流子注入效率. 进一步的研究表明, 由于PEDOT:AA多层膜间靠较弱的亲水、疏水作用结合, 这种导电多层有序膜的热稳定性与普通LB膜相似, 在较高温度下发生从层状有序态到无序态的变化, 这是导致OLED器件性能发生劣化的主要原因.  相似文献   

14.
In recent years, the interest in developing luminescent lanthanide complexes has been greatly stimulated by their potential use in electroluminescent displays1. Europium complexes appear most attractive in view of the high photoluminescent efficiency and the high monochromatic red light that are widely exploited in full-color displays2. It has been approved that the second ligand plays an important role in europium complexes, the synergistic complexation of the second ligand can not only lead …  相似文献   

15.
用一种星型配体1,3,5-三((4,5-二氮芴-9-肟)甲基))-苯合成了三核铕配合物Eu3(DBM)9(TDMB)(DBM=1,3-二苯基-1,3-丙二酮),合成的配合物用元素分析,红外,氢核磁共振进行了表征。研究了配体与配合物的光物理性质。配合物在固态和溶液中具有不同的发光光谱,在二氯甲烷中分别在612 nm和414 nm有荧光峰,固态时只有红光发射,这一结果显示在固态时从TDMB配体到铕离子的能量传递更有效。  相似文献   

16.
Triple-layer-type organic electroluminescent devices were fabricated using charge-transporting poly(N-vinylcarbazole) (PVK) as a hole-transporting emitter layer. Electron-transporting layers consisting of a triazole derivative (TAZ) and an aluminum complex (Alq) layer were used to maximize the carrier recombination efficiency. The EL device with a structure of glass substrate/indium-tinoxide/PVK/TAZ/AIq/Mg:Ag showed bright blue emission from the PVK layer with a luminance of over 700 cd/m2. The emission color was tuned to a desirable color in the visible region through doping the PVK layer with fluorescent dyes. Bright white emission, in particular, was obtained for the first time at a high luminance level of over 3000 cd/m2 by using three kinds of fluorescent dyes each emitting red, green or blue.  相似文献   

17.
To simplify the fabrication of multilayer light‐emitting diodes, we prepared a p‐phenylenevinylene‐based polymer capped with crosslinkable styrene through a Wittig reaction. Insoluble poly(p‐phenylenevinylene) derivative (PPVD) films were prepared by a thermal treatment. The photoluminescence and ultraviolet–visible (UV–vis) absorbance of crosslinked films and noncrosslinked films were studied. We also studied the solvent resistance of crosslinked PPV films with UV–vis absorption spectra and atomic force microscopy. Double‐layer devices using crosslinked PPVD as an emitting layer, 2‐(4‐tert‐butylphenyl)‐5‐phenyl‐1,3,4‐oxadiazole (PBD) in poly(methyl methacrylate) as an electron‐transporting layer, and calcium as a cathode were fabricated. A maximum luminance efficiency of 0.70 cd/A and a maximum brightness of 740 cd/m2 at 16 V were demonstrated. A 12‐fold improvement in the luminance efficiency with respect to that of single‐layer devices was realized. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2124–2129, 2004  相似文献   

18.
Electroluminescent(EL) devices have been fabricated using four different polymers with different glass transition temperatures (Tg) dispersed with N,N′-bis-(3-methylphenyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine (TPD) as a hole transport layer and tris(8-hydroxyquinoline) aluminum (Alq3) as an emitting layer. It was found that the higher the Tg of the polymer, the longer the lifetime of the device. From observations of TPD-doped polymer films with optical microscope and atomic force microscope, dispersing TPD in the polymers was found to suppress the crystallization that causes the roughness of the film surface. It was also observed that the higher the Tg of the host polymers, the more difficult TPD crystallization was. The property of the EL device with polyethersulfone (PES) dispersed with TPD was also investigated. The lifetime of EL device with the TPD doped PES film was improved more than five times at a current density below 10 mA/cm2 compared with the device with a conventional TPD hole transport layer. © 1997 John Wiley & Sons, Ltd.  相似文献   

19.
Wang K  Huang L  Gao L  Jin L  Huang C 《Inorganic chemistry》2002,41(13):3353-3358
A novel Re(I) complex, Re(CO)(3)ClL (L = 2-(1-ethylbenzimidazol-2-yl)pyridine), has been synthesized and structurally characterized by single-crystal X-ray diffraction analysis. Crystal data for C(17)H(13)ClN(3)O(3)Re: space group, orthorhombic, Pbca; a = 12.713(6) A; b = 15.103(7) A; c = 18.253(8) A; Z = 8. Stable vacuum vapor deposition of the Re complex has been verified by UV-vis and infrared spectroscopy. A two-layer electroluminescent device with configuration of ITO/TPD/Re(CO)(3)ClL/Mg(0.9)Ag(0.1)/Ag has been fabricated, which gave a turn-on voltage of as low as 3 V and a maximum luminance of 113 cd/m(2) at a bias voltage of 10.5 V, and confirmed that the Re complex can function as a bright orange-red emitter and an electron transport material in an electroluminescent device.  相似文献   

20.
1, 3, 4-oxadiazole-contanining ligand DPOP(DPOP=2-(11-dipyrido[3, 2-a: 2′, 3′-c]phenazine)-5-p-tolyl-1, 3, 4-oxadiazole) was synthesized by a convenient method and characterized by elemental analysis, IR, 1H NMR. Then, corresponding Eu(Ⅲ) complex [Eu(DBM)3(DPOP)] (DBM=1, 3-diphenyl-1, 3-propanedionate) was prepared and characterized by elemental analysis, IR. The photophysical properties of ligand and its europium complex were investigated. The ligand emitted at 443 nm. There were different PL spectra in solid state and in solution of Eu(DBM)3(DPOP). There are two fluorescent peaks at 614 nm, 400 nm in dichloromethane solution of Eu(DBM)3(DPOP), but in solid state only red emission was observed. This result indicated that efficient energy tranfer could take place from DPOP ligand to europium ion in Eu-complex solid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号