首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
利用形成碳-氧键将磷铵两性离子(1)共价键合到聚苯乙烯(PS)材料表面, 改善其抗凝血性能. 首先对PS进行氯甲基化反应, 生成苄氯结构, 然后通过自合成化合物1中的-OH与氯甲基化聚苯乙烯的-CH2Cl反应形成醚键, 将两性离子接枝在PS上. 表征了产物结构, 并通过水接触角和血小板黏附实验对结构修饰前后材料的亲水性和抗凝血性能进行了比较. 结果表明, 磷铵两性离子结构修饰的聚苯乙烯材料可以有效地提高其血液相容性.  相似文献   

2.
通过己二异氰酸酯(HDI)在聚醚氨酯(PU)表面构建磺铵两性离子结构,以改善其不凝血性能。首先用HDI活化PU表面,生成PU—NCO衍生物;然后通过N,N—二甲基乙醇胺(DMEEA)中的-OH和PU表面的-NCO反应生成PU—N(CH3)2;最后用丙磺酸内酯(PS)进行开环。生成磺铵两性离子结构。用ATR—IR表征了各步反应,对构建前后材料的抗血小板粘附性能进行了比较,结果表明,磺铵两性离子结构具有优异的抗血小板粘附性。  相似文献   

3.
通过己二异氰酸酯(HDI)在聚醚氨酯(PU)表面构建磺铵两性离子结构,以改善其不凝血性能,首先用HDI活化PU表面,生成PU-NCO衍生物;然后通过N,N-二甲基乙醇胺(DMEEA)中的-OH和PU表面的-NCO反应生成PU-N(CH3)2;最后用丙磺酸内酯(PS)进行开环.生成磺铵两性离子结构,用ATR-IR表征了各步反应,对构建前后材料的抗血小板粘附性能进行了比较,结果表明,磺铵两性离子结构具有优异的抗血小板粘附性.  相似文献   

4.
采用以碘酸基为末端基的聚氧乙烯(PEO)接枝聚醚氨酯和氨基酸反应,将赖氨酸(Lys)和酪氨酸(Tyr)通过PEO为“间隔臂”固定在聚醚氨酯上,制备了氨基酸和PEO复合修饰的聚醚氨酯PEU-g-PEO-SO2Lys和PEU-g-PEO-SO2Tyr。通过血小板粘附试验对材料的体外抗凝血性进行 了初步评价。研究结果表明,采用具有选择性吸附纤溶酶原功能的赖氨酸和PEO复合修聚氨酯,不仅减少了材料表面血小板粘附量,而且减少了材料表面栓的形成量。  相似文献   

5.
生物相容性 ,特别是血液相容性是生物医用材料极其重要的性能[1] .提高不凝血性一直是生物材料研究与发展 (R D)的主要内容之一 ,半个多世纪来 ,不凝血材料的R D已取得了很大的发展[2 ] .但还不能满足心血管植入物 (Cardiovascularimplants)及心血管医物 (Cardiovasculardevices)对不凝血性的需要 .Ratner[3 ] 在最近一次的血液相容性问题研讨会上再次强调了不凝血材料研究的紧迫性 .会议的报告也反映了该领域的研究现状 ,并提出了今后要研究的问题等 .目前不凝血性较好的材料仅有聚…  相似文献   

6.
董彬  张珍仙  刘亚飞  张彰 《化学研究》2014,25(6):627-631
合成了一类含季铵基和磺酸基结构的非对称Gemini两性离子表面活性剂;利用红外光谱、质谱、离子定性试验验证了合成产物的分子结构,并测定了其表面性质.结果表明,目标产物的分子结构符合设计预期;五种非对称Gemini两性离子表面活性剂的表面张力在30mN/m左右,临界胶束浓度达到10-4~10-5数量级.此外,虽然非对称Gemini两性离子表面活性剂的起泡性能比相应单链型表面活性剂的稍差,但其稳泡性明显优于后者.  相似文献   

7.
共价键合多层肝素薄膜修饰涂有硅橡胶的人工血管   总被引:5,自引:0,他引:5  
报道一种采用医用硅橡胶涂层作软支撑共价键合多层肝素薄膜修饰人工血管等生物医学装置使其表面具有抗凝血性能的方法. 该项技术首先在人工血管的表面上涂上医用硅橡胶作为软支撑, 再在硅橡胶涂层的表面上涂上全氟磺酸(Nafion), 为接下来的层层静电组装提供活性基团. 然后将带正电荷的二苯胺重氮树脂(PA)和带负电荷的肝素分子(Hep)通过静电吸引作用交替沉积到全氟磺酸涂层的表面上. 紫外可见吸收光谱和傅立叶红外光谱数据表明, 在紫外光照射下, 重氮树脂的重氮基团与肝素的硫酸基团之间发生光化学反应, 生成硫酸酯, 使膜内层间离子键转变成共价键, 从而使肝素多层膜的稳定性大大提高. 研究表明经层层自组装和光化学反应后肝素分子呈现良好的抗凝血性能. 人工血管肝素化表面中的肝素分子以壁面结合的方式存在, 在人工血管表面固化肝素和抗凝血酶-III (AT-III)形成的络合物显示出较好的抗凝血性. 硅橡胶涂层使肝素分子与人工血管表面有一定距离, 有利于提高抗凝血性能. 在四个双层之内, 肝素对凝血酶失活的影响随着PA/Hep双层数目增加而增加, 说明了只有最外层的肝素才对凝血酶失活有直接影响. 该方法操作工艺简单, 重复性好, 可较广泛地适用于在多种生物医用装置和多孔组织工程支架材料的表面制备稳定的抗凝血涂层, 具有良好的应用前景.  相似文献   

8.
生物材料,尤其是血液接触材料,满足抗凝血性能是临床应用的首要前提。采用表面改性策略来提高材料表面的抗凝血性能,简单易行。表面改性主要包括表面设计和方法设计两个方面。本文对抗凝血性高分子生物材料的表面设计各类方法进行了综述,其中包括材料表面的微相分离结构、材料的负电荷表面设计、材料的亲(疏)水性表面设计、材料的生物活性化表面设计和材料的内皮细胞化表面设计等等,并重点阐述了两性离子的抗凝血表面设计。  相似文献   

9.
不凝血生物材料(Nonthrombogenic Biomaterials)是生物医学材料R/D的核心内容之一[1~3]. 不凝血生物材料在分子设计与合成上必须解决两个基本问题: 一是不凝血分子结构的设计与合成; 二是不凝血分子结构在生物材料表面构建的分子设计与合成. 根据"维持正常构象"学说, 聚乙二醇链结构及两性离子, 如磺-铵, 磷-铵及羧-铵等结构应具有较好的不凝血性[2~4]. 磷-铵两性离子结构的代表之一是磷酰胆碱结构. Ishihara等[5]从模拟细胞膜表面分子结构的角度出发, 最早设计并合成了2-甲基丙烯酰氧基乙基磷酰胆碱(MPC). MPC和其它单体的共聚物与一般生物材料相比, 其抗血小板的粘附性有很大的提高, 但其力学性能欠佳[6~9]. 因此, 应将其构建在力学性能优异的生物材料(如聚醚氨酯)的表面上. 为此, 设计与合成含有羟基等适当官能团的磷酰胆碱便是关键. 有关这类磷酰胆碱尚未见文献报道. 本文报道这类新的含羟基磷酰胆碱系列及其前体的合成与表征. 合成路线如下:  相似文献   

10.
通过十八烷基聚氧乙烯和环氧氯丙烷的封端反应制备了α-环氧基-ω-十八烷基聚氧乙烯大单体。并采用BF3·Et2O引发THF和大单本共聚合,得到了梳状的十八烷基聚氧乙烯接枝共聚醚。以该共共聚醚为软段合成了十八烷基和聚氧乙烯复合修饰的聚氨酯(PEU-g-PEO-C18)。通过血小板粘附试验对材料的体外抗凝血性实验结果表明,采用具有选择性吸附白蛋白功能的十八烷基和PEO复合修饰聚氨酯,材料表面血小板粘附量  相似文献   

11.
In order to improve the nonthr0mbogenicity of chitin, a new monomer, N, N-dimethyl(β-hydroxyethyloxyethyl) ammonium propanesulfonate (DHAPS) was designed, synthesized and grafted onto the chitin membrane by using hexamethylene diisocyanate (HDI) as a coupling agent. Surface analysis of the grafted membranes by ATR-FTIR and XPS confirms that DHAPS has been successfully grafted onto the membrane surface. The platelet resistant property of the grafted membranes was evaluated by a platelet-rich plasma adhesion method. The results showed that platelet-adhesive resistance of the modified membrane has been greatly improved.  相似文献   

12.
On the molecular level, it is believed that polymers containing zwitterionic structures should be compatible withblood. In this work polyurethane films were grafted with sulfobetaine by a three-step procedure. In the first step, the films'surfaces were treated with hexamethylene diisocyanate (HDI) in toluene at 50℃ in the presence of di-n-butyl tin dilaurate(DBTDL) as a catalyst. The extent of the reaction was monitored by ATR-IR spectra; a maximum number of free NCOgroups was obtained after a reaction time of 90 min. In the second step, the hydroxyl groups of N,N-dimethylethylethanolamine (DMEA) were allowed to react in toluene with NCO groups bound on the surface. In the thirdstep, sulfobetaines were formed on the surface through the ring-opening reaction between tertiary amine of DMEA and 1,3-propanesultone (PS). The surfaces of the films were characterized by ATR-IR and XPS showing that the grafted surfaceswere composed of sulfobetaine. The results of the contact angle measurement show that the surface was strongly hydrophilic.The platelet adhesion test demonstrated that the films grafted with sulfobetaine have excellent blood compatibility.  相似文献   

13.
合成了结构可切换型甲基丙烯酸酯季铵盐(CBMA-1C2). 在聚丙烯(PP)片基表面光接枝构建CBMA-1C2聚合物刷, 其在碱性水溶液中可水解形成两性离子聚合物刷PCBMA. 用蛋白质吸附及血小板黏附实验评价改性表面亲/疏水性及表面电荷对生物分子与材料表面之间相互作用的影响. 结果发现, 与未改性PP片基相比, 聚合物PCBMA-1C2改性表面水解前后均具有优异的亲水性能, 由于聚合物PCBMA-1C2水解前后表面电荷不同, 对生物分子与改性PP表面的相互作用表现出明显差异. 亲水性好、 两性离子结构的聚合物PCBMA表面表现出对蛋白吸附和血小板黏附的良好抑制作用.  相似文献   

14.
Based on an in vitro test for an improvement of the blood compatibility of silicone rubber (SR) films by grafting O-butyrylchitosan (OBCS), OBCS was covalently immobilized onto SR film surface using the photosensitive hetero-bifunctional crosslinking reagent, 4-azidobenzoic acid, which was previously bonded to OBCS by reaction between an acid group of the crosslinking reagent and a free amino group of OBCS. Surface properties of SR film were investigated by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), electron spectroscopy for chemical analysis (ESCA) and the water contact angle measurements. The blood compatibility of SR film was evaluated by platelet rich plasma (PRP) contacting experiments and the results were observed by scanning electron microscopy (SEM). The state of platelet adhesion was described. The suitable modifications could be carried out to tailor SR films biomaterial to meet the specific needs of different biomedical applications. These results suggest that the blood compatible of SR films/OBCS films show their suitability as potential biomaterials.  相似文献   

15.
A new economic and convenient method to modify the surface of microporous polypropylene (PP) membranes with phospholipid polymer was given. The process included the photo-irradiated graft polymerization of N,N-dimethylaminoethyl methacrylate (DMAEMA) and the ring-opening reaction of the grafted polyDMAEMA with 2-alkyloxy-2-oxide-1,3,2-dioxo-phospholanes (AOP). Four AOPs, whose alkyloxy groups consisted of dodecyl, tetradecyl,hexadecyl and octadecyl moieties, were used to convert the grafted polyDMAEMA to phospholipidpolymers. FT-IR spectra confirmed the chemical change of membrane surface. Platelets adhesion experiment indicated that PP membrane with excellent blood compatible surface could be fabricated by this method.  相似文献   

16.
The surface of polyethersulfone (PES) membrane was modified by blending triblock copolymers of methoxyl poly(ethylene glycol)-polyurethane-methoxyl poly(ethylene glycol) (mPEG-PU-mPEG), which were synthesized through solution polymerization with mPEG Mns of 500 and 2000, respectively. The PES and PES/mPEG-PU-mPEG blended membranes were prepared through spin coating coupled with liquid-liquid phase separation. FTIR and (1)H NMR analysis confirmed that the triblock copolymers were successfully synthesized. The functional groups and morphologies of the membranes were studied by ATR-FTIR and SEM, respectively. It was found that the triblock copolymers were blended into PES membranes successfully, and the morphologies of the blended membranes were somewhat different from PES membrane. The water contact angles and platelet adhesion were decreased after blending mPEG-PU-mPEG into PES membranes. Meanwhile, the activated partial thromboplastin time (APTT) for the blended membranes increased. The anti-protein-fouling property and permeation property of the blended membranes improved obviously. SEM observation and 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay proved the surfaces of the blended membranes promoted human hepatocytes adhesion and proliferation better than PES membrane.  相似文献   

17.
To improve interfacial phenomena of poly(dimethylsiloxane) (PDMS) as biomaterials, well-defined triblock copolymers were prepared as coating materials by reversible addition-fragmentation chain transfer (RAFT) controlled polymerization. Hydroxy-terminated poly(vinylmethylsiloxane-co-dimethylsiloxane) (HO–PVlDmMS–OH) was synthesized by ring-opening polymerization. The copolymerization ratio of vinylmethylsiloxane to dimethylsiloxane was 1/9. The molecular weight of HO–PVlDmMS–OH ranged from (1.43 to 4.44) × 104, and their molecular weight distribution (Mw/Mn) as determined by size-exclusion chromatography equipped with multiangle laser light scattering (SEC-MALS) was 1.16. 4-Cyanopentanoic acid dithiobenzoate was reacted with HO–PVlDmMS–OH to obtain macromolecular chain transfer agents (macro-CTA). 2-Methacryloyloxyethyl phosphorylcholine (MPC) was polymerized with macro-CTAs. The gel-permeation chromatography (GPC) chart of synthesized polymers was a single peak and Mw/Mn was relatively narrow (1.3–1.6). Then the poly(MPC) (PMPC)–PVlDmMS–PMPC triblock copolymers were synthesized. The molecular weight of PMPC in a triblock copolymer was easily controllable by changing the polymerization time or the composition of the macro-CTA to a monomer in the feed. The synthesized block copolymers were slightly soluble in water and extremely soluble in ethanol and 2-propanol.

Surface modification was performed via hydrosilylation. The block copolymer was coated on the PDMS film whose surface was pretreated with poly(hydromethylsiloxane). The surface wettability and lubrication of the PDMS film were effectively improved by immobilization with the block copolymers. In addition, the number of adherent platelets from human platelet-rich plasma (PRP) was dramatically reduced by surface modification. Particularly, the triblock copolymer having a high composition ratio of MPC units to silicone units was effective in improving the surface properties of PDMS.

By selective decomposition of the Si–H bond at the surface of the PDMS substrate by irradiation with UV light, the coating region of the triblock copolymer was easily controlled, resulting in the fabrication of micropatterns. On the surface, albumin adsorption was well manipulated.  相似文献   


18.
Alginate, a natural polysaccharide that has shown great potential as a cell scaffold for the regeneration of many tissues, has only been nominally explored as an electrospun biomaterial due to cytotoxic chemicals that have typically been used during nanofiber formation and crosslinking. Alginate cannot be electrospun by itself and is often co‐spun with poly(ethylene oxide) (PEO). In this work, a cell adhesive peptide (GRGDSP) modified alginate (RA) and unmodified alginate (UA) were blended with PEO at different concentrations and blending ratios, and then electrospun to prepare uniform nanofibers. The ability of electrospun RA scaffolds to support human dermal fibroblast cell attachment, spreading, and subsequent proliferation was greatly enhanced on the adhesion ligand‐modified nanofibers, demonstrating the promise of this electrospun polysaccharide material with defined nanoscale architecture and cell adhesive properties for tissue regeneration applications.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号