首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ionic equilibria for poly-4-vinyl pyridine (P4VP) and poly-2-vinyl pyridine (P2VP) were studied by physico-chemical techniques such as potentiometry, viscosity and NMR-1H. The mixture of ethanol (45 per cent w.p.) and water was used as solvent to obtain the total range of ionization (0–1). It was found that the dissociation constants of pyridine residue of polymers in the absence of electrostatic interaction (pK0 = 3·3–3·9) are lower than for the monomer analogues 4-ethylpyridine and 2-ethylpyridine (5·02) and depend on ionic strength (NaCl).A sharp decrease of pKapp at the beginning of titration and increase of specific viscosity for P4VP and P2VP are both explained by electrostatic interactions between positive charges forming during titration of the macromolecules. Most probably, these interactions act through the organic part of the macromolecule. On the other hand, it is shown by NMR-1H that sharp changes in pKapp and specific viscosity at the beginning of the titration are not associated with changes in the average conformation of the monomer unit in the polymer. This conformation can be destroyed only when the energy of electrostatic interactions is large enough and this occurs when the mean distance between positive charges is relatively short.  相似文献   

2.
The complexation of Cu2+ by N-isopropyl-2-methyl-1,2-propanediamine (L) has been studied by potentiometric and spectrophotometric titration. The dominant complexes formed in this system are [CuL]2+, [CuL2]2+, [Cu2L2(OH)2]2+, and [CuL(OH)2]. The data were thoroughly tested for different models with [CuL(OH)]+, [CuL(OH)]+, [Cu(OH)]+, and [Cu2(OH)2]2+ as additional species. The importance of steric factors is indicated by the d-d* spectra: for [CuL2]2+, (λmax = 499 nm) the absorption maximum is shifted by 50 nm to high energies relative to [Cu(en)2]2+, (λmax = 549 nm), whereas the opposite is true for the 1:1 complexes ([CuL]2+ : λmax = 712 nm,s [Cu(en)]2+ : λmax = 660 nm).  相似文献   

3.
Water-soluble Cu(II) complexes of poly-4-vinylpyridine, partially quaternized by methyl bromide or dimethylsulphate (PP, Mt) and of the analogue (4-ethylpyridine) were studied by physicochemical technique such as visible spectrophotometry, viscosity, speed sedimentation and EPR spectroscopy. Peculiarities of the complex formation reaction were observed for the polymer compared to the analogue. The predominant formation of tetrapyridinate-Cu(II) species [(CuL4)]24 was found to take place in aqueous solution for PP, Mt with degree of quaternization (β) 20,24,37,49,57,65 per cent over a wide range of PYJ Cu(II) molar ratios. In addition, not all the free polymer pyridine residues are capable of forming [Cu L4 ]2 complexes even though there is a large excess of Cu(II) ions. The maximum value of the pyridine fraction forming [Cu L4 ]21 in PPYMt-20, 24, 37, 49 (obtained by spectroscopic titration) was found to be 45–50 per cent. Addition of Cu(NO3)2 to the aqueous polymer solution causes strong reduction of specific viscosity and increase of sedimentation coefficient from - 1 S to - 6 S. These data lend to the suggestion of the existence of macromolecular associates bound by Cu(II) ions and approximate estimation of their average molecular weight. It was shown also that Bjerrum's procedure cannot be used to account for the polymer stability constants. The differences between complex formation for polymer pyridine and monomer pyridine seem to be due to the high local pyridine concentration in the coil of the macromolecule and the hydration effects of the polymer chain on the characteristics of the pyridine residues.  相似文献   

4.
Copper(II) complexes of the ligands N2-[(R)-2-hydroxypropyl]- and N2-[(S)-2-hydroxypropyl]-(S)-phenylalaninamide performed chiral separation of N-dansyl-protected and unmodified amino acids in HPLC (reversed phase). With the aim of investigating which species are potentially involved in the discrimination mechanism, the two ligands were synthesized and their complexation equilibria with Cu2+ studied by potentiometry and spectrophotometry in aqueous solution up to pH 11.7. The formation constants of the species observed, [CuL]2+, [CuL2]2+, [CuLH–1]+, [CuL2H–1]+, [CuL2H–2], and [CuL2H–3]?, were quite similar for both compounds and were compared to those of (S)-phenylalaninamide. Most probably, in [CuL2H–3]? the ligands behave as terdentate, with the deprotonated OH group occupying an apical position.  相似文献   

5.
The influence of 2‐hydroxy‐3‐[(2‐hydroxy‐1,1‐dimethylethyl)amino]propane‐1‐sulfonic acid (AMPSO=HL) on systems containing copper(II) was studied by glass‐electrode potentiometry (GEP) and direct‐current polarography (DCP), at fixed total‐ligand‐to‐total‐metal‐concentration ratios and various pH values (25°, 0.1M KNO3 medium). The predicted model ([CuL]+, [CuL(OH)], [CuL2], [CuL2(OH)]?, [CuL2(OH)2]2?, and [CuL3]?) and the overall stability constants for species found were obtained by combining results from both electrochemical techniques. The last five complexes are reported for the first time. For the species [CuL]+, [CuL2], [CuL3]?, and [CuL2(OH)2]2?, it was possible to determine stability constants with reasonable certainty and their values, as log β, were found to be 4.62±0.04, 9.5±0.1, 13.4±0.1, and 21.2±0.1, respectively. For the species [CuL(OH)] and [CuL2(OH)]?, stability constants 11.7±0.2 and 15.6±0.2, respectively, are presented as indicative values. It was demonstrated that AMPSO buffer may decrease the Cu2+ concentration by ten orders of magnitude by forming complexes with Cu2+. For the first time, the correction in DCP waves for the adsorption of the ligand and quasi‐reversibility of the metal allowed to determine stability‐constant values that are in good agreement with the values obtained by GEP. The importance of graphic analysis of data and significance of employing two analytical techniques was demonstrated; neither GEP nor DCP would be able to provide the correct M/L/OH? model and reliable stability constants when used independently.  相似文献   

6.
《Polyhedron》1987,6(5):855-861
The crystal structures of three copper(II) complexes with phenoxyisobutyric acid (PIBAH) and p-chlorophenoxyisobutyric acid (PCIBAH) have been determined by X-ray diffraction. Tetra-μ-[2-methyl-2-(4-chlorophenoxy)-propanoato-O,O′]-bis[2-amino-pyrimidine)copper(II)], [Cu2(PCIBA)4(2-aminopyrimidine)2]2 (1) is a centrosymmetric tetracar☐ylate bridged dimer [Cu⋯Cu, 2.689(2)Å] with the nitrogens of the 2-aminopyrimidine molecules occupying the axial positions [CuN, 2.198(7)Å]. Tetraaquacopper(II) tri-μ-[2-methyl-2-phenoxypropanoato-O,O′]-bis[(2-methyl-2-phenoxypropanoato(copper(II)], [Cu(H2O)4]2+] {[Cu2(PIBA)5]}2, (2), is a disordered precursor of the stable structure (3), [Cu(H2O)5]2+ {[Cu2(PIBA)5]·4H2O, consisting of centrosymmetric square planar [Cu(H2O)4]2+ cations and tris(car☐ylate)-bridged dimer anions [Cu⋯Cu, 2.85(1)Å] (2). The fourth position of each square planar dimer ‘end’ is occupied by a car☐ylate oxygen of a PIBA molecule which also provides the ether oxygen capping each axial dimer site [CuO, 2.15(4), 2.19(5)Å]. This completes a five-membered chelate ring. A symmetrical array of eight hydrogen bonds link the four waters of the [Cu(H2O)4]2+ cation to the car☐yl oxygens of both the capping PIBA ligands of the two dimeric anions. Structure (3) has essentially identical [Cu2(PIBA)5] dimer anions [Cu⋯Cu, 2.929(1)Å] and hydrogen-bonding interactions with the tetraaquacopper(II) cations. However, water molecules partially occupy the octahedral sites of these cations [CuO, 2.46(1)Å], as well as a number of lattice sites in the crystal.  相似文献   

7.
Solvation and complexation of Cu(II), Ni(II), and Co(II) with adipic acid dihydrazide (L) in aqueous and aqueous-ethanol solutions (ethanol mole fraction 0.07–0.68) were studied by spectrophotometry. The formation constants of the species M(LH)3+, ML2+, M2L4+ (μ = Cu2+, Ni2+, Co2+), and also M2L 2 4+ and ML 2 2+ (μ = Cu2+, Ni2+) were determined. With Cu(II), the complexes Cu(LH) 2 4+ , CuL(LH)3+, and Cu2L(LH)5+ were also detected and characterized. Evidence is given for the hydrazide coordination mode: tridentate in ML2+, bidentate in M(LH)3+ and ML 2 2+ , and tetradentate in M2L4+ and M2L 2 4+ . The ligand exchange reactions involving CuL2+, Cu(LH)3+, Cu(LH) 2 4+ , CuL(LH)3+, CuL 2 2+ , and Cu2L(LH)5+ in aqueous solutions of Cu(II) were revealed and kinetically characterized by nuclear magnetic relaxation. The heretofore unknown rate constants of formation of these complexes were calculated from the thermodynamic and kinetic parameters. Factors controlling the rate constants of the complex formation and chemical exchange are discussed.  相似文献   

8.
Ten copper(II) complexes {[CuL1Cl] (1), [CuL1NO3]2 (2), [CuL1N3]2 · 2/3H2O (3), [CuL1]2(ClO4)2 · 2H2O (4), [CuL2Cl]2 (5), [CuL2N3] (6), [Cu(HL2)SO4]2 · 4H2O (7), [Cu(HL2)2] (ClO4)2 · 1/2EtOH (8), [CuL3Cl]2 (9), [CuL3NCS] · 1/2H2O (10)} of three NNS donor thiosemicarbazone ligands {pyridine-2-carbaldehyde-N(4)-p-methoxyphenyl thiosemicarbazone [HL1], pyridine-2-carbaldehyde-N(4)-2-phenethyl thiosemicarbazone [HL2] and pyridine-2-carbaldehyde N(4)-(methyl), N(4)-(phenyl) thiosemicarbazone [HL3]} were synthesized and physico-chemically characterized. The crystal structure of compound 9 has been determined by X-ray diffraction studies and is found that the dimer consists of two square pyramidal Cu(II) centers linked by two chlorine atoms.  相似文献   

9.

In this study, a mononuclear CuL complex was prepared by the use of bis-N,N′-(salicylidene)-1, 3-propanediamine (LH2) and Cu2+ ion. NiCl2 and NiBr2 salt were treated with this complex in dioxanewater medium and two new complexes [(CuL)2NiCl2(H2O)2] and [(CuL)2NiBr2(H2O)2)] with Cu(II)–Ni(II)–Cu(II) nucleus structure were obtained. In addition to this bis-N,N′-(2-hydroxybenzyl)-1,3-diaminopropane (LHH2) was prepared by the reduction of LH2 with NaBH4 in MeOH medium. The treatment of this reduced complex with Cu2+ ion resulted a complex [(CuLH)2CuCl2] with a structure of Cu(II)–Cu(II)–Cu(II). The complexes prepared were characterized by the use of elemental analysis, IR spectroscopy, thermogravimetric and X-ray diffraction methods. The crystal structures of [(CuL)2NiBr2(H2O)2] (СIF file CCDC 1448402) and [(CuLH)2CuCl2] (СIF file CCDC 1448401) complexes were elucidated. It was found that halogen ions are coordinated to terminal Cu2+ ions which are in a distorted square pyramid coordination sphere. It was determined that the central Cu(II), which joins terminal square pyramidal Cu(II), was coordinated only by the phenolic oxygens of the ligand while the central Ni(II) was coordinated by two phenolic oxygens of the organic ligand and two water molecules. These complexes were investigated by XPS and it was found that the terminal and central Cu2+ ions were different in Cu(II)–Cu(II)–Cu(II) complex. Also, the thermal degradation of the CuLH complex unit was observed to exothermic in contrast to the expectations.

  相似文献   

10.
The solutions containing one of the copper salts (CuCl2, Cu(ClO4)2, Cu(NO3)2, and CuSO4) and one of the non-steroidal anti-inflammatory drugs (NSAIDs, ibuprofen, ketoprofen or naproxen) were analyzed by electrospray ionization mass spectrometry. Three of the salts, namely CuCl2, Cu(ClO4)2 and Cu(NO3)2, yielded binuclear complexes of drug:metal stoichiometry 1:2. Existence of the complexes of such stoichiometry has not been earlier observed. For copper(II) chloride the complexes (ions of the type [M-HCOOH+Cu2Cl]+ and [M+Cu2Cl]+, M stands for the drug molecule) were formed in the gas phase. When copper(II) perchlorate or copper(II) nitrate was used, the observed binuclear copper complexes (ions of the type [M-H+Cu2(ClO4)2+CH3OH]+, [M-H+Cu2(ClO4)2]+ and [M-H+Cu2(NO3)2+CH3OH]+, [M-H+Cu2(NO3)2]+) were observed at low cone voltage, thus these complexes must have already existed in the solution analysed. Therefore, such complexes may also exist under physiological conditions.   相似文献   

11.
CuL2 · 1.5H2O and ML2 · 2H2O · 2EtOH (M = Co2+, Ni2+, Mn2+) coordination compounds were synthesized via the exchange reaction between the sodium salt of 3-methyl-1-phenyl-4-formylpyrazol-5-one (HL) and metal chlorides.The synthesized compounds were studied by thermogravimetry, magnetochemistry, and electron and IR spectroscopy. The complexes CuL2 · 2Py and CoL2 · 2Py · MeOH were obtained via recrystallization from a methanol-pyridine mixture, and their structures were studied by X-ray diffraction. Pyrazolone was found to be coordinated in the deprotonated enol form and to form six-membered chelate rings with a metal. The coordination polyhedron of a metal cation was found to be a square bipyramid (Cu2+) or an axially elongated octahedron (Co2+) with its vertices occupied by the oxygen atoms of 3-methyl-1-phenyl-4-formylpyrazol-5-one and the nitrogen atoms of pyridine.  相似文献   

12.
In aqueous acetonitrile (AN), Cu (I) forms the complexes Cu(AN)L+ and CuL with a series of substituted imidazoles (L). Stability constants logK of Cu(AN)+ + L ? Cu(AN)L+ and logβ2 were near 5 and 12, resp., log units for all ligands. The rate of autoxidation is described by ?d[O2]/dt=[CuL]2[O2](ka/(1+kb[CuL]) + (kc[L]+kd)/([CuL] + ke[Cu])), implying competition between one- or two-electron reduction of O2. The value of kc decreases from 5500M ?2S ?1 for unsubstituted imidazole to about 40M ?2S ?1 for 2-methylimidazole or 1,2-dimethyl-imidazole and essentially zero for the corresponding 2-ethyl-derivatives. On the other hand, ka and kb are much less influenced by the nature of the ligands, all values being near 5 · 104M ?2S ?1 and 103M ?1, respectively, for the complexes with the last four bases. Thus rather subtle sterical changes may strongly influence the relative importance of different pathways in the reduction of dioxygen by cuprous complexes.  相似文献   

13.
A heptadentate ligand, tris[(L)-alanyl-2-carboxamidoethyl]amine (H3trenala), has been synthesized as its tetrahydrochloride salt; its protonation constants and the stability constants of the copper(II) and nickel(II) chelates have been determined by potentiometry. Mononuclear species with protonated, neutral, or deprotonated forms of the ligand, [Cu(H5trenala)]4+, [M(H4trenala)]3+, [M(H3trenala)]2+, [M(H2trenala)]+, and [M(Htrenala)] (M?=?Cu2+ and Ni2+) have been detected in all cases, while only Cu2+ gives dinuclear [Cu2(H2trenala)]2+, [Cu2(Htrenala)]2+, [Cu2(trenala)]+, and [Cu2(trenala)(OH)] species. Two dinuclear copper(II) complexes have been prepared and characterized by spectroscopic techniques (IR, UV-Vis, mass electro-spray) and thermogravimetric analysis.  相似文献   

14.
The acid-basic and complexing properties of N,N-dimethyl-N-(2-hydroxybenzyl)ethylenediamine (HL) in aqueous propan-2-ol were characterized by spectrophotometry, pH-metry, and mathematical simulation of equilibria in solutions (T = 25 ± 0.1°C, = 0.1 M KNO3). Dimer H2L2 was found to predominate in solution at c HL = 0.01 mol/l. Three protonated dimeric (H3L2 +, H4L2 2+, and H5L2 3+), diprotonated monomeric (H3L2+), and triprotonated tetrameric forms (H7L4 3+) were detected in the system, depending on pH. At lower ligand concentrations (c HL = 0.0015 mol/l), the solution contains both dimers and monomers of this compound. The higher dentate number of HL compared to 2-alkylaminomethylphenols allows it to form more number of both mono- and binuclear complexes ([Cu(HL)]2+, [Cu(HL)2]2+, [CuL2], [CuL2OH], [Cu2(HL)2]4+, and [Cu2(HL)2L2]2+), making them more stable.  相似文献   

15.
Adducts of bis(dimethyldithiocarbamato)zinc and -copper(II) complexes with pyridine, [M(Py)(Mdtc)2], and their benzene solvates [M(Py)(Mdtc)2] · 0.5C6H6 were synthesized. The electron paramagnetic resonance method and solid-state 13C and 15N CP/MAS NMR spectroscopy were used to perform a comparative study of the compounds obtained. The EPR data showed that the geometry of Cu(II) coordination polyhedra both in the adduct itself [Cu(Py)(Mdtc)2], and in its solvate, [Cu(Py)(Mdtc)2] · 0.5C6H6 is intermediate between a square pyramid (SP) and a trigonal bipyramid (TBP), the contribution from the latter being dominant (75%) in [Cu(Py)(Mdtc)2]. In the solvated adduct [Cu(Py)(Mdtc)2] · 0.5C6H6, the copper(II) polyhedron is distorted to form an SP-enriched structure (the contribution from TBP is reduced to 55%). It was found NMR data that [Zn(Py)(Mdtc)2] exists in a single high-symmetry molecular form. Coordinated pyridine molecule shows molecular motion about the Zn–N bond. The solvation of the adduct results in structural nonequivalence of the Mdtcligands in [Zn(Py)(Mdtc)2] · 0.5C6H6. Signals in the 15N NMR spectra were assigned to the structural positions of the atoms in the previously described molecular structure of a solvated adduct. It was found that the heterogeneous reaction of adduct formation during the absorption of pyridine from the gas phase by polycrystalline [Zn2(Mdtc)4] species is accompanied by the dissociation of binuclear molecules.  相似文献   

16.
A series of new 3d-metal complexes based on 2-amino-3-(1-methylbenzimidazol-2-yl)-4(5H)-ketothiophen (HL1) and 2-amino-3-(2-benzothiazolyl)-4(5H)-ketothiophen (HL2) were synthesized. Compounds of the general formulas [ML2] and [M(HL1)2Cl2] (where M = Co2+, Ni2+, Zn2+, Cu2+) were prepared by the reaction of the above mentioned ligands with the corresponding acetate (for [ML2]) or chloride (for [M(HL1)2Cl2]) salts in a methanol or a methanol–chloroform medium. The choice of the anion in the initial metal salt, as well as the selection of the ligand, is crucial for obtaining coordination compounds with a neutral or deprotonated form of the 2-amino-4(5H)-ketothiophens. Thus, in contrast to HL1, complexes with the neutral form of HL2 cannot be obtained under the same conditions. All the complexes were studied by spectroscopic methods and X-ray crystallography (for [CuL12] · H2O). The coordination polyhedron of the copper atom is formed by four nitrogen atoms from two ligand anions and the geometry of the coordination sphere is intermediate between tetrahedral and square-planar.  相似文献   

17.
Three Cu(II) complexes constructed from 4-(2-pyridyl)-1H-1,2,3-triazole (L), namely, [CuL2Cl2]·H2O, [CuL2(CH3OH)(NO3)]NO3 and [CuL2(H2O)]SO4, have been synthesized and characterized. X-ray crystal structure analyses revealed that [CuL2Cl2]·H2O and [CuL2(CH3OH)(NO3)]NO3 have octahedral geometries, whilst [CuL2(H2O)]SO4 adopts a square-pyramidal coordination geometry. In all three complexes, the Cu(II) atoms are chelated by two L ligands in the basal plane, whilst the apical positions are occupied by Cl?, NO3?, CH3OH or H2O. The bandgaps between the HOMO and LUMO were estimated by cyclic voltammetry (CV) and diffuse reflectance spectroscopy (DRS) to be 3.43, 3.12, and 3.74 eV, respectively. Theoretical calculations on each structure gave similar results to the experiments. Frontier molecular orbital analyses showed that the higher electron density on the apical ligand, the lower the bandgap.  相似文献   

18.
Summary Metal(II) complexes of 2-acetylthiophene-2-furoylhydrazone (HL) of the types [VO(HL)SO4], [Cu(HL)2Cl2(H2O)], [M(HL)2Cl2] [M=CoII, NiII, or ZnII] and [ML2(H2O)2] [M=CoII, NiII, CuII or ZnII] have been prepared and characterized on the basis of elemental analyses, molar conductance, magnetic susceptibility, visible, e.s.r. and i.r. spectral studies. The bonding and stereochemistry of the complexes are discussed.  相似文献   

19.
Complexes with Macrocyclic Ligands. V Dinuclear Copper(II) Complexes with Chiral Macrocyclic Ligands of Schiff‐Base Type: Syntheses and Structures The synthesis and properties of four chiral, dinuclear, macrocyclic, cationic copper(II) complexes, [Cu2(Lm,n)]2+ ( 1 – 4 ), are described. The two symmetrical compounds [Cu2(L2,2)][ClO4]2 ( 1 and 2 ) were synthesized in a one‐step reaction from 2,6‐diformyl‐4‐tert.‐butylphenol, copper(II)‐perchlorate and the chiral diamine (1S,2S)‐1,2‐diphenylethylenediamine (synthesis of 1 ) and (1R,2R)‐1,2‐diaminocyclohexane (synthesis of 2 ), respectively. For the synthesis of the two unsymmetrical compounds [Cu2(LPh,n)][ClO4]2 ( 3 and 4 ) the mononuclear, neutral copper(II) complex [CuLPh] ( 5 ) [synthesized from 2,6‐diformyl‐4‐tert.‐butylphenol, copper(II)‐acetate and 1,2‐phenylenediamine] was reacted with (1R,2R)‐1,2‐diaminocyclohexane (synthesis of 3 ) and (S)‐1,1′‐binaphthyl‐2,2′‐diamine (synthesis of 4 ), respectively. The structures of the two unsymmetrical copper(II) compounds ( 3 and 4 ) were determined by X‐ray diffraction.  相似文献   

20.
Copper (II) complex of 2,4-dimethyl-1,5,9,12-tetraazacyclopentadeca-1,4-diene, [Me2(15)dieneN4] was synthesized and used in the fabrication of Cu2+ – selective ISE membrane in PVC matrix. The membrane having Cu(II) macrocyclic complex as electroactive material along with sodium tetraphenyl borate (NaTPB) as anion discriminator. Dibutyl phthalate (DBP) as plasticizer in poly(vinyl chloride) (PVC) matrix was prepared for the determination of Cu2+. The best performance was observed by the membrane having Cu(II) complex–PVC–NaTPB–DBP with composition 1:5:1:3. The sensor worked well over a concentration range 1.12 × 10−6 M–1.0 × 10−1 M between pH 2.1–6.2 and a fast response time 10±2 s and a lifetime of 6 months. Their performance in partially non-aqueous medium was found satisfactory. Electrodes exhibited excellent selectivity for Cu2+ ion over other mono-, di-, trivalent cations. It can also be used as indicator electrode in the potentiometric titration of Cu2+ against EDTA as well as in the determination of Cu2+ in real samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号