首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the techniques to calculate the effective property of a heterogeneous medium is the effective medium theory. The present paper presents a general mathematical formulation for the effective medium approximation using a self-consistent choice of the effective permeability, to apply it to the case of a general anisotropic 2D medium and to the case of a 3D isotropic medium with randomly oriented ellipsoidal inclusions. The 2D results are compared with analytical results and with a homogenization technique with good result. The 3D correlations are used to derive percolation thresholds in two-phase systems with a large permeability contrast, which are compared to numerical results from the literature, also with good results.  相似文献   

2.
The permeability of a porous medium is strongly affected by its local geometry and connectivity, the size distribution of the solid inclusions, and the pores available for flow. Since direct measurements of the permeability are time consuming and require experiments that are not always possible, the reliable theoretical assessment of the permeability based on the medium structural characteristics alone is of importance. When the porosity approaches unity, the permeability?Cporosity relationships represented by the Kozeny?CCarman equations and Archie??s law predict that permeability tends to infinity and thus they yield unrealistic results if specific area of the porous media does not tend to zero. The aim of this article is the evaluation of the relationships between porosity and permeability for a set of fractal models with porosity approaching unity and a finite permeability. It is shown that the tube bundles generated by finite iterations of the corresponding geometric fractals can be used to model porous media where the permeability?Cporosity relationships are derived analytically. Several examples of the tube bundles are constructed, and the relevance of the derived permeability?Cporosity relationships is discussed in connection with the permeability measurements of highly porous metal foams reported in the literature.  相似文献   

3.
The effect of yield stress on the flow characteristics of a Casson fluid in a homogeneous porous medium bounded by a circular tube is investigated by employing the Brinkman model to account for the Darcy resistance offered by the porous medium. The non-linear coupled implicit system of differential equations governing the flow is first transformed into suitable integral equations and are solved numerically. Analytical solution is obtained for a Newtonian fluid in the case of constant permeability, and the numerical solution is verified with that of the analytic solution. The effect of yield stress of the fluid and permeability of the porous medium on shear stress and velocity distributions, plug flow radius and flow rate are examined. The minimum pressure gradient required to start the flow is found to be independent of the permeability of the porous medium and is equal to the yield stress of the fluid.  相似文献   

4.
The main focus of this work is to model macroscopically the effects of partial saturation upon the permeability of dual scale fibrous media made of fiber bundles when a Newtonian viscous fluid impregnates it. A new phenomenological model is proposed to explain the discrepancies between experimental pressure results and analytical predictions based on Darcy's law. This model incorporates the essential features of relative permeability but without the necessity of measuring saturation of the liquid for its prediction. The model is very relevant for the small scale industrial systems where a liquid is forced to flow through a fibrous porous medium. It requires four parameters. Two of them are the two permeability values based on the two length scales. One length scale is of the order of magnitude of the individual fiber radius and corresponds to the permeability of the completely staurated medium, the other is of the order of magnitude of the distance between the fiber bundles and corresponds to the permeability of the partially saturated medium. The other two parameters are the lengths of the two partially saturated regions of the flow domain. The two lengths of the partially saturated region and the permeability of the fully saturated flow domain can be directly measured from the experiments. The excellent agreement between the model and the experimental results of inlet pressure profile with respect to time suggests that this model may be used to describe the variation of the permeability behind a moving front in such porous media for correct pressure prediction. It may also be used to characterize the fibrous medium by determining the two different permeabilities and the relative importance of the unsaturated portion of the flow domain for a given architecture.  相似文献   

5.
A theoretical model which allows us to determine the permeability of a fibrous porous medium is proposed. Fibres are assumed to be parallel and nonuniform in space and material with a low volume fraction of fibres is considered. The model includes two geometric parameters: the diameter of fibres and the diameter of caverns or fissures inside the bundle of fibres. The tensor of permeability of the porous medium is determined based upon a generalized cell model. The components of permeability tensor depend on two parameters which are determined using experimental data and least-squares approximation. The influence of the geometric parameters on components of permeability tensor is discussed.  相似文献   

6.
变形双重介质广义流动分析   总被引:21,自引:0,他引:21  
对于碳酸盐油藏和低渗油藏的渗流问题,传统的研究方法都是假设地层渗透率是常数,这假设,对于地层渗透率是压力敏感的情况,对压力的空间变化和瞬时变化将导致较大的误差。本文研究了应力敏感地层中双重介质渗流问题的压力不稳定响应,不仅考虑了储层的双重介质特征,而且考虑了应力敏感地层中介质的变形,建立了应力敏感地层双重介质的数学模型,渗透率依赖于孔隙压力变化的流动方程是强非线性的,采用Douglas-Jones预估-校正法获得了只有裂缝发生形变定产量生产时无限大地层的数值解及定产量生产岩块与裂隙同时发生形变时无限大地层的数值解,并探讨了变形参数和双重介质参数变化时压力的变化规律,给出几种情况下典型压力曲线图版,这些结果可用于实际试井分析。  相似文献   

7.
Network Model of Flow,Transport and Biofilm Effects in Porous Media   总被引:1,自引:0,他引:1  
In this paper, we develop a network model to determine porosity and permeability changes in a porous medium as a result of changes in the amount of biomass. The biomass is in the form of biofilms. Biofilms form when certain types of bacteria reproduce, bond to surfaces, and produce extracellular polymer (EPS) filaments that link together the bacteria. The pore spaces are modeled as a system of interconnected pipes in two and three dimensions. The radii of the pipes are given by a lognormal probability distribution. Volumetric flow rates through each of the pipes, and through the medium, are determined by solving a linear system of equations, with a symmetric and positive definite matrix. Transport through the medium is modeled by upwind, explicit finite difference approximations in the individual pipes. Methods for handling the boundary conditions between pipes and for visualizing the results of numerical simulations are developed. Increases in biomass, as a result of transport and reaction, decrease the pipe radii, which decreases the permeability of the medium. Relationships between biomass accumulation and permeability and porosity reduction are presented.  相似文献   

8.
This paper deals with the theoretical aspects of chemical-dissolution front instability problems in two-dimensional fluid-saturated porous media including medium anisotropic effects. Since a general anisotropic medium can be described as an orthotropic medium in the corresponding principal directions, a two-dimensional orthotropic porous medium is considered to derive the analytical solution for the critical condition, which is used to judge whether or not the chemical dissolution front can become unstable during its propagation. In the case of the mineral dissolution ratio (that is defined as the ratio of the dissolved-mineral equilibrium concentration in the pore-fluid to the molar concentration of the dissolvable mineral in the solid matrix of the fluid-saturated porous medium) approaching zero, the corresponding critical condition has been mathematically derived when medium permeability anisotropic effects are considered. As a complementary tool, the computational simulation method is used to simulate the morphological evolution of chemical dissolution fronts in two-dimensional fluid-saturated porous media including medium anisotropic effects. The related theoretical and numerical results demonstrated that: (1) a decrease in the medium anisotropic permeability factor (or ratio), which is defined as the ratio of the principal permeability in the transversal direction to that in the longitudinal direction parallel to the pore-fluid inflow direction, can stabilize the chemical dissolution front so that it becomes more difficult for a planar chemical-dissolution front to evolve into different morphologies in the chemical dissolution system; (2) the medium anisotropic permeability ratio can have significant effects on the morphological evolution of the chemical dissolution front. When the Zhao number of the chemical dissolution system is greater than its critical value, the greater the medium anisotropic permeability ratio, the faster the irregular chemical-dissolution front grows.  相似文献   

9.
The porosity and permeability of the caved zone (gob) in a longwall operation impact many ventilation and methane control related issues, such as air leakage into the gob, the onset of spontaneous combustion, methane and air flow patterns in the gob, and the interaction of gob gas ventholes with the mining environment. Despite its importance, the gob is typically inaccessible for performing direct measurements of porosity and permeability. Thus, there has always been debate on the likely values of porosity and permeability of the caved zone and how these values can be predicted. This study demonstrates a predictive approach that combines fractal scaling in porous medium with principles of fluid flow. The approach allows the calculation of porosity and permeability from the size distribution of broken rock material in the gob, which can be determined from image analyzes of gob material using the theories on a completely fragmented porous medium. The virtual fragmented fractal porous medium so generated is exposed to various uniaxial stresses to simulate gob compaction and porosity and permeability changes during this process. The results suggest that the gob porosity and permeability values can be predicted by this approach and the presented models are capable to produce values close to values documented by other researchers.  相似文献   

10.
As the temperature of a saturated porous medium drops, the water in the pores starts to freeze. Since the temperature at which the phase change takes place is dependent on the pore size, the permeability of the medium changes continuously. Simultaneously, due to the expansion of water on freezing, it is forced to migrate through the pore body thus inducing stresses in material matrix. The stresses developed and the consequent frost damage are therefore dependent on the change in the permeability characteristics of the medium on freezing. This paper deals with the numerical prediction of permeability characteristics of porous cemented media saturated with water undergoing progressive freezing.A bond percolation model is used to generate the pore structure according to an assumed poresize distribution. Permeability of the medium at various temperatures is computed by solving the network problem. The computed results are compared with other analytical and experimental results. The proposed model predicts a threshold temperature below which permeability drops to zero. This phenomenon is crucial in developing a deeper understanding of the mechanism of frost damage to cemented porous materials such as bricks, stone, concrete, etc.  相似文献   

11.
Passive control of the flow behind a bluff-body is obtained by integrating porous area on the body. The penalisation method is used to modelize the flow in three different media. In fact each medium can be considered as a porous medium. The fluid is identified as a porous medium of infinite permeability and the solid is identified as a porous medium of zero permeability. This way, it is easy to compute the flow in each medium using the same parameter. Some benefical effects are due to the porous interface: the flow is smoothed, and the enstrophy and drag are significantly reduced.  相似文献   

12.
The porous-fluid interface encompasses a region bridging the flow inside a porous medium and a free-flowing fluid. In the context of volume-averaged simulations, it can be described by a set of gradually changing parameters defining the porous medium, mainly porosity and permeability. In this paper, both the permeability and the porous-induced drag force are evaluated a-priori, by explicitly filtering a set of Particle-Resolved Simulations (PRS) of the flow in the channel partially occupied by the porous medium. Different porous matrices are considered and the influence of the geometry and filtering parameters on the macroscopic quantities is studied. Especially, the focus is placed on the requirements for the kernel type and size to perform filtering accurately, and their impact on the distribution of permeability at the interface. The performance of the typically used models for the permeability is compared to the explicitly filtered results. Lastly, a new model for permeability and the drag force is introduced, taking into account the information about the filtering size and non-uniformity of the velocity field. The model greatly improves the prediction of velocity at the porous-fluid interface and serves as a proof of concept that a successful porous drag model should strive to include information about both parameters.  相似文献   

13.
The equations of viscoplastic fluid flow through a porous medium are written for all types of anisotropy. It is shown that in anisotropic media the flows with a limiting gradient are characterized by two material tensors: the tensor of permeability (flow resistance) coefficients and the tensor of limiting gradients. A complex of laboratory measurements for determining the tensors of permeability coefficients and limiting gradients is considered for all types of anisotropic media. It is shown that the tensors of permeability coefficients and limiting gradients are coaxial. Conditions of flow onset and fluid flow laws are formulated for media with monoclinic and triclinic symmetries of flow characteristics.  相似文献   

14.
A fluid flow through an isotropic porous medium with randomly arranged elliptical particles is simulated by the lattice Boltzmann method. The dimensionless pressure drop and the dimensionless permeability are evaluated as functions of the Reynolds number. The effect of the aspect ratio of the major to minor semi-axis of the ellipse on the dimensionless permeability is considered for different values of porosity. The pressure drop is thoroughly investigated as a function of fluid viscosity for different values of the aspect ratio and porosity. The influence of various parameters of the problem on the mean tortuosity of the medium is considered.  相似文献   

15.
A renormalization method for the computation of the transport properties of a porous medium modelled as a multiscale random network is proposed. The method applies to electrical conduction, molecular diffusion, hydraulic transport under low Reynolds number, transport of condensable vapour, in the medium fully or partially saturated by one or two immiscible fluids. For 31 test materials, the method previously exposed by the authors for the reconstitution of the pore structure from the mercury intrusion curve is applied. Then, the intrinsic permeability is computed. The results are in good agreement with the measured permeability.  相似文献   

16.
In particle-laden flows through porous media, porosity and permeability are significantly affected by the deposition and erosion of particles. Experiments show that the permeability evolution of a porous medium with respect to a particle suspension is not smooth, but rather exhibits significant jumps followed by longer periods of continuous permeability decrease. Their origin seems to be related to internal flow path reorganization by avalanches of deposited material due to erosion inside the porous medium. We apply neutron tomography to resolve the spatiotemporal evolution of the pore space during clogging and unclogging to prove the hypothesis of flow path reorganization behind the permeability jumps. This mechanistic understanding of clogging phenomena is relevant for a number of applications from oil production to filters or suffosion as the mechanisms behind sinkhole formation.  相似文献   

17.
Despite a large number of publications on bioconvection in suspensions of motile microorganisms, bioconvection in a fluid saturated porous medium is a relatively new area of research. This paper is motivated by experimental research by Kessler (1986) who established that a porous medium prevents the development of convection instability in algal suspensions. This suggests that there may exist a critical value of the permeability of a porous medium. If the permeability is smaller than critical, the system is stable and bioconvection does not develop. If the permeability is larger than critical, bioconvection may develop. This paper presents a model of bioconvection of gyrotactic motile microorganisms in a fluid saturated porous medium. The focus of this research is the determination of the critical value of permeability of a porous medium by a linear stability analysis. A simple but elegant analytical solution for the critical Darcy number is obtained.  相似文献   

18.
We analyse the convection flow of a viscous fluid through a horizontal channel enclosing a fully saturated porous medium. The Galerkin finite element analysis is used to discuss the flow and heat transfer through the porous medium using serendipity elements. The velocity, the temperature distributions and the rate of heat transfer are analysed for variations in the governing parameters. The profiles at different vertical levels are asymmetric curves, exhibiting reversal flow everywhere except on the midplane. In a given porous medium, for fixed G or N, the temperature in the fluid region at any position in fluids with a higher Prandtl number, is much higher than in fluids with a lower Prandtl number. Likewise, other parameters being fixed, lesser the permeability of the medium, lower the temperature in the flow field. Nu reduces across the flow at all axial positions, while it enhances along the axial direction of the channel. Nu reduces with decrease in the Darcy parameter D, and thus lesser the permeability of the medium, lesser the rate of heat transfer across the boundary at any axial position of the channel.  相似文献   

19.
The problem of the creeping flow through a spherical droplet with a nonhomogenous porous layer in a spherical container has been studied analytically. Darcy’s model for the flow inside the porous annular region and the Stokes equation for the flow inside the spherical cavity and container are used to analyze the flow. The drag force is exerted on the porous spherical particles enclosing a cavity, and the hydrodynamic permeability of the spherical droplet with a non-homogeneous porous layer is ca...  相似文献   

20.
Reactive transport processes in a porous medium will often both cause changes to the pore structure, via precipitation and dissolution of biomass or minerals, and be affected by these changes, via changes to the material’s porosity and permeability. An understanding of the pore structure morphology and the changes to flow parameters during these processes is critical when modeling reactive transport. Commonly applied porosity–permeability relations in simulation models on the REV scale use a power-law relation, often with slight modifications, to describe such features; they are often used for modeling the effects of mineral precipitation and/or dissolution on permeability. To predict the reduction in permeability due to biomass growth, many different and often rather complex relations have been developed and published by a variety of authors. Some authors use exponential or simplified Kozeny–Carman relations. However, many of these relations do not lead to fundamentally different predictions of permeability alteration when compared to a simple power-law relation with a suitable exponent. Exceptions to this general trend are only few of the porosity–permeability relations developed for biomass clogging; these consider a residual permeability even when the pore space is completely filled with biomass. Other exceptions are relations that consider a critical porosity at which the porous medium becomes impermeable; this is often used when modeling the effect of mineral precipitation. This review first defines the scale on which porosity–permeability relations are typically used and aims at explaining why these relations are not unique. It shows the variety of existing approaches and concludes with their essential features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号