首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
N‐(Substituted aryl/cyclohexyl)‐N'‐[5‐bromo‐5‐nitro‐2‐oxido‐1,3,2‐dioxaphosphorinane‐2‐yl]ureas RR'P(O)NHC(O)NHR' (5) were synthesized by the reactions of 2‐bromo‐2‐nitro‐1,3‐propanediol (4) with chlorides of aryl/cyclohexyl carbamidophosphoric acids (3) in the presence of triethylamine at room temperature. Their ir, 1H, 13C and 31P nmr spectral data are discussed.  相似文献   

2.
The environmental remediation of military installation sites is very important due to frequently large presence of carcinogenic derivatives of explosives in the ground and in ground waters. These nitroaromatic explosives and their derivatives are assessed by sensing devices. It is highly important to have insight on the reasons affecting the reduction potentials of these compounds. The redox properties of mono‐, di‐ and tri‐nitroaromatic compounds are studied with cyclic voltammetry at a glassy carbon electrode for comparison. We show that the presence of a methyl group in the aromatic system leads into more negative reduction potentials. The ease of nitro group reduction vary from meta>para>ortho positions relative to a methyl group. The redox properties were also studied at various pH ranging from 2 to 10. Acidic environments facilitated the reduction processes at lower potentials. These findings will have a profound influence upon understanding the processes during reductive decontaminations of the polluted sites as well as for construction of highly sensitive sensors for their determination.  相似文献   

3.
The preparation of several novel 3,5‐substituted‐indole‐2‐carboxamides is described. A 5‐nitro‐indole‐2‐carboxylate was elaborated to the 3‐benzhydryl ester, N‐substituted ester, and carboxylic acid intermedi ates, followed by conversion to the amide and then reduction of the 5‐nitro group to the amine. Indole‐2‐carboxamides with 3‐benzyl and 3‐phenyl substituents were prepared in four steps from either a 3‐bromo indole ester using the Suzuki reaction or from a 3‐keto substituted indole ester. N‐Alkylation of ethyl indole‐2‐carboxylate, followed by amidation and catalytic addition of 9‐hydroxyxanthene gave a 3‐xanthyl‐indole‐2‐carboxamide analog and a spiropyrrolo indole as a side product.  相似文献   

4.
The molecular geometries and internal rotational barriers of the nitro group of nitrobenzene (NB), 2‐nitrotoluene (2‐NT), 2‐nitroaniline (2‐NA), and 2‐nitrophenol (2‐NP) were calculated by five different types of density functional theory (DFT) methods with three different levels of basis sets. Analysis of the torsional angles of the nitro, methyl, amino, and hydroxyl groups indicate that NB, 2‐NA, and 2‐NP are planar molecules, but 2‐NT is not a planar molecule. Internal rotational barriers of the nitro group were calculated as V2 barriers, and the NO2 torsional potentials for each molecule were given. The values of the V2 barriers depend on the DFT methods and basis sets. The average values of the V2 barriers for NB, 2‐NT, 2‐NA, and 2‐NP are 6.47 kcal/mol, 3.00 kcal/mol, 10.20 kcal/mol, and 13.26 kcal/mol, respectively. © 2001 John Wiley & Sons, Inc. Int J Quant Chem 83: 332–337, 2001  相似文献   

5.
Bingel–Hirsch derivatives of the trimetallic nitride template endohedral metallofullerenes (TNT‐EMFs) Sc3N@Ih‐C80 and Lu3N@Ih‐C80 were prepared by reacting these compounds with 2‐bromodiethyl malonate, 2‐bromo‐1,3‐dipyrrolidin‐1‐ylpropane‐1,3‐dionate bromide, and 9‐bromo fluorene. The mono‐adducts were isolated and their 1H NMR spectra showed that the addition occurred with high regioselectivity at the [6,6] bonds of the Ih‐C80 fullerene cage. Electrochemical analysis showed that the reductive electrochemistry behavior of these derivatives is irreversible at a scan rate of 100 mV s?1, which is comparable to the behavior of the pristine fullerene species. The first reduction potential of each derivative is either cathodically or anodically shifted by a different value, depending on the attached addend. Bis‐adducts containing EtOOC‐C‐COOEt and HC‐COOEt addends were isolated by HPLC and in the case of Sc3N@Ih‐C80 the first reduction potential exhibits a larger shift towards negative potentials when compared to the mono‐adduct. This observation is important for designing acceptor materials for the construction of bulk heterojunction (BHJ) organic solar cells, since the polyfunctionalization not only increases the solubility of the fullerene species but also offers a promising approach for bringing the LUMO energy levels closer for the donor and the acceptor materials.  相似文献   

6.
New glycosyl donors have been developed that contained several para‐substituted O‐aryl protecting groups and their stereoselectivity for the glycosylation reaction was evaluated. A highly β‐selective glycosylation reaction was achieved by using thioglycosides that were protected by 4‐nitrophenyl (NP) groups, which were introduced by using the corresponding diaryliodonium triflate. Analysis of the stereoselectivities of several glycosyl donors indicated that the β‐glycosides were obtained through an SN2‐type displacement from the corresponding α‐glycosyl triflate. The NP group could be removed by reduction of the nitro group and acylation, followed by oxidation with ceric ammonium nitrate (CAN).  相似文献   

7.
Three 1‐phenylindolin‐2‐one derivatives, namely 1‐phenylindolin‐2‐one, C14H11NO, (I), 5‐bromo‐1‐phenylindolin‐2‐one, C14H10BrNO, (II), and 5‐iodo‐1‐phenylindolin‐2‐one, C14H10INO, (III), have been synthesized and their structures determined. Compounds (I) and (II) crystallized in the centrosymmetric space groups Pbca and P21/c, respectively, while compound (III) crystallized in the polar space group Aea2. Density functional theory (DFT) calculations show that the molecular dipole moment gradually decreases in the order (I) > (II) > (III). The relatively smaller dipole moment of (III) and the larger non‐electrostatic intermolecular interactions may be the main reasons for the noncentrosymmetric and polar structure of (III).  相似文献   

8.
15N NMR spectral data for 3‐substituted (chloro, bromo, acetyl, carboxy, carboethoxy, methylsulfanyl, methylsulfinyl, N,N‐dimethylsulfamoyl, nitro) 4(1H)‐quinolinones and their 1‐methyl derivatives are presented. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
The dipole moments of twelve 2‐N‐substituted amino‐5‐nitro‐4‐methylpyridines ( I‐XII ) and three 2‐N‐substituted amino‐3‐nitro‐4‐methylpyridines ( XIII‐XV ) were determined in benzene. The polar aspects of intramolecular charge‐transfer and intramolecular hydrogen bonding were discussed. The interaction dipole moments, μint, were calculated for 2‐N‐alkyl(or aryl)amino‐5‐nitro‐4‐methylpyridines. Increased alkylation of amino nitrogen brought about an intensified push‐pull interaction between the amino and nitro groups. The solvent effects on the dipole moments of 2‐N‐methylamino‐5‐nitro‐4‐methyl‐( I ), 2‐N,N‐dimethylamino‐5‐nitro‐4‐methyl‐ ( II ) and 2‐N‐methylamino‐3‐nitro‐4‐methylpyridines ( XIII ) were different. Specific hydrogen bond solute‐solvent interactions increased the charge‐transfer effect in I , but it did not disrupt the intramolecular hydrogen bond in XIII.  相似文献   

10.
We show that peripheral nitro groups enhance the maximum two‐photon absorption cross‐section of trans‐A2B2‐porphyrins bearing two phenylethynyl substituents by more than one order of magnitude. Maximum values as high as 1000 GM result from realization of suitable conditions for effective resonance enhancement along with a lowering of the energy and intensification of the two‐photon allowed transitions in the Soret region.  相似文献   

11.
Infinite chains connected by N—H...N hydrogen bonding form the primary packing motif in two closely related 4‐nitroimidazole derivatives, viz. 5‐bromo‐2‐methyl‐4‐nitro‐1H‐imidazole, C4H4BrN3O2, (I), and 2‐methyl‐4‐nitro‐1H‐imidazole‐5‐carbonitrile, C5H4N4O2, (II). These chains are almost identical, even though in (II) there are two symmetry‐independent molecules in the asymmetric unit. The differences appear in the interactions between the chains; in (I), there are strong C—Br...O halogen bonds, which connect the chains into a two‐dimensional grid, while in (II), the cyano group does not participate in specific interactions and the chains are only loosely connected into a three‐dimensional structure.  相似文献   

12.
Synthesis of several O‐ethyl phos‐phorodiamidates derived from unsubstituted, or 6‐bromo‐, or 6‐nitro‐3‐amino‐2‐methyl‐3H‐quinazolin‐4‐one and either amino acid esters or fatty amines is described. These compounds showed high insecticidal activity toward mosquito larvae, with lethal concentrations LC50 and LC90 as low as 0.028 and 1.724 ppm, respectively. The highest activity was observed with those compounds containing both a nitro substituent and a 10‐carbon‐atom fatty‐amine moiety. Multiple regression analysis was used to explain the larvicidal activity variation of these compounds. The larvicidal activity generally decreased according to the following order of amino acid moieties: glutamic acid > methionine > glycine > alanine > phenylalanine. © 1999 John Wiley & Sons, Inc. Heteroatom Chem 10: 455–460, 1999  相似文献   

13.
Isomeric 5‐bromo‐3‐nitrosalicylaldehyde phenylhydrazone and 3‐bromo‐5‐nitrosalicylaldehyde phenylhydrazone, C13H10BrN3O3, both crystallize with two molecules in the asymmetric unit. In both isomers, an intramolecular O—H...N hydrogen bond links the hydroxy group and the imine N atom. In the 5‐bromo‐3‐nitro isomer, there are two independent N—H...O hydrogen‐bonded chains, each molecule in the asymmetric unit forming its own chain. These chains are then linked to form a three‐dimensional framework by a combination of weak C—H...O, C—H...Br, C—H...π and π–π stacking interactions. In the 3‐bromo‐5‐nitro isomer, N—H...O hydrogen bonds link the independent molecules alternately into a zigzag chain, which is reinforced by a weak C—H...O interaction. Individual chains are linked by a C—H...Br interaction and a three‐dimensional framework is generated by π–π stacking interactions.  相似文献   

14.
Recent studies suggest that aliphatic β‐nitro alcohols may represent a useful class of compounds for use as in vivo therapeutic corneoscleral cross‐linking agents with higher order nitroalcohols (HONAs) showing enhanced efficacy over the mono‐nitroalcohols. The current study was undertaken in order to evaluate the chemical stability of these compounds during storage conditions. Two mono‐nitroalcohols (2‐nitroethanol=2ne and 2‐nitro‐1‐propanol=2nprop) and two HONAs, a nitrodiol (2‐methyl‐2‐nitro‐1,3‐propanediol=MNPD), and a nitrotriol (2‐hydroxymethyl‐2‐nitro‐1,3‐propanediol=HNPD) were monitored for chemical stability by 1H‐NMR for up to 7 months. Each compound was studied at two concentrations (1% and 10%) either in unbuffered H2O or 0.2 m NaH2PO4/Na2HPO4 (pH=5), and at 0°C and room temperature (RT) for a total of eight conditions for each compound. The 1H‐NMR spectra for the starting material were compared to subsequent spectra. Under all four of the conditions studied, both the nitrodiol (MNPD) and nitrotriol (HNPD) were stable for the duration of 7 months. 2nprop became unstable under all conditions at 3 months. 2ne was the most unstable of all the compounds tested. HONAs exhibit excellent chemical stability under long‐term storage conditions. In contrast, the nitromonols tested are significantly less stable. These findings are relevant to the translation of this technology into clinical use.  相似文献   

15.
Based on the oxidation of 1,5‐naphthalenediol ( 4 ) and 6‐bromo‐2‐naphthol ( 9 ) via Teuber reaction, an efficient synthesis of 5,6‐dimethoxy‐1‐naphthol ( 1 ) and 5,6‐dimethoxy‐2‐naphthol ( 2 ) was achieved with high overall yield (16% for 1 and 25% for 2 ). The key steps of the synthetic strategy involved the oxidation of naphthols ( 4 and 9 ) to the corresponding naphthoquinones ( 5 and 10 ) and the conversion of 5,6‐dimethoxy‐2‐naphthaldehyde to 5,6‐dimethoxy‐2‐naphthol formate through Baeyer‐Villiger oxidation‐rearrangement.  相似文献   

16.
2,5‐Dibromo‐3‐(6′‐hexylpyridine‐2′‐yl)thiophene ( DBPyTh ) was synthesized by the Suzuki coupling reaction between two aromatic compounds followed by the bromination. The Grignard metathesis reaction of DBPyTh with isopropylmagnesium chloride proceeded in 85% conversion and the regioselective halogen–metal exchange at the 2‐position was confirmed. Namely, 5‐bromo‐2‐chloromagnesio‐3‐(6′‐hexylpyridine‐2′‐yl)thiophene and 2‐bromo‐5‐chloromagnesio‐3‐(6′‐hexylpyridine‐2′‐yl)thiophene were generated in 90:10 molar ratio. Subsequently, the Kumada coupling polymerization was carried out using 1,3‐bis(diphenylphosphinopropane)nickel(II) dichloride to obtain poly(3‐(6′‐hexylpyridine‐2′‐yl)thiophene) ( PolyPyTh ). The polymer molecular weight could be roughly controlled by the catalyst concentration and the molecular weight distribution ranged from 1.25 to 1.80. The gas chromatograph analysis indicated that 5‐bromo‐2‐chloromagnesio‐3‐(6′‐hexylpyridine‐2′‐yl)thiophene was preferentially polymerized in 90% conversion and the percentage of the head‐to‐tail content (regioregularity) was calculated to be 96%. The matrix‐assisted laser desorption/ionization time‐of‐fright mass spectrum indicated that both polymer chain ends were substituted with the hydrogen atom. The absorption maxima of polymer in CHCl3 and thin film were observed at 447 and 457 nm, respectively, which were blue‐shifted compared with poly(3‐(4′‐octylphenyl)thiophene). From the CV measurement of the polymer thin film, highest occupied molecular orbital (HOMO) (?5.31 eV) and lowest unoccupied molecular orbital (LUMO) (?3.76 eV) energy levels were calculated from the oxidation and reduction onset potentials, respectively, and the electrochemical band gap energy was determined to be 1.62 eV. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
The thermal reaction of the endohedral metallofullerene La2@D2(10611)‐C72, which contains two pentalene units at opposite ends of the cage, with 5,6‐diphenyl‐3‐(2‐pyridyl)‐1,2,4‐triazine proceeded selectively to afford only two bisfulleroid isomers. The molecular structure of one isomer was determined using single‐crystal X‐ray crystallography. The results suggest that the [4+2] cycloaddition was initiated in a highly regioselective manner at the C? C bond connecting two pentagon rings of C72. Subsequent intramolecular electrocyclization followed by cycloreversion resulted in the formation of an open‐cage derivative having three seven‐membered ring orifices on the cage and a significantly elongated cage geometry. The reduction potentials of the open‐cage derivatives were similar to those of La2@D2‐C72 whereas the oxidation potentials were shifted more negative than those of La2@D2‐C72. These results point out that further oxidation could occur easily in the derivatives.  相似文献   

18.
Oxidation of E,E‐bis(3‐bromo‐1‐chloro‐1‐propen‐2‐yl) sulfide and selenide with hydrogen peroxide in chloroform/acetic acid or acetic acid affords previously unknown E,E‐bis(3‐bromo‐1‐chloro‐1‐propen‐2‐yl) sulfoxide, selenoxide, and sulfone. The reaction of E,E‐bis(3‐bromo‐1‐chloro‐1‐propen‐2‐yl) sulfone with primary amines in ethanol in the presence of NaHCO3 or Na2CO3 is found to lead not only to heterocyclization but also to alcoholysis of the chloromethylidene groups in the intermediate bis(chloromethylidene) derivatives of thiomorpholine‐1,1‐dioxides to afford N‐organyl‐2(E),6(E)‐bis(ethoxymethylidene) thiomorpholine‐1,1‐dioxides as final products.  相似文献   

19.
N,N′‐Diethyl‐4‐nitrobenzene‐1,3‐diamine, C10H15N3O2, (I), crystallizes with two independent molecules in the asymmetric unit, both of which are nearly planar. The molecules differ in the conformation of the ethylamine group trans to the nitro group. Both molecules contain intramolecular N—H...O hydrogen bonds between the adjacent amine and nitro groups and are linked into one‐dimensional chains by intermolecular N—H...O hydrogen bonds. The chains are organized in layers parallel to (101) with separations of ca 3.4 Å between adjacent sheets. The packing is quite different from what was observed in isomeric 1,3‐bis(ethylamino)‐2‐nitrobenzene. 2,6‐Bis(ethylamino)‐3‐nitrobenzonitrile, C11H14N4O2, (II), differs from (I) only in the presence of the nitrile functionality between the two ethylamine groups. Compound (II) crystallizes with one unique molecule in the asymmetric unit. In contrast with (I), one of the ethylamine groups, which is disordered over two sites with occupancies of 0.75 and 0.25, is positioned so that the methyl group is directed out of the plane of the ring by approximately 85°. This ethylamine group forms an intramolecular N—H...O hydrogen bond with the adjacent nitro group. The packing in (II) is very different from that in (I). Molecules of (II) are linked by both intermolecular amine–nitro N—H...O and amine–nitrile N—H...N hydrogen bonds into a two‐dimensional network in the (10) plane. Alternating molecules are approximately orthogonal to one another, indicating that π–π interactions are not a significant factor in the packing. Bis(4‐ethylamino‐3‐nitrophenyl) sulfone, C16H18N4O6S, (III), contains the same ortho nitro/ethylamine pairing as in (I), with the position para to the nitro group occupied by the sulfone instead of a second ethylamine group. Each 4‐ethylamino‐3‐nitrobenzene moiety is nearly planar and contains the typical intramolecular N—H...O hydrogen bond. Due to the tetrahedral geometry about the S atom, the molecules of (III) adopt an overall V shape. There are no intermolecular amine–nitro hydrogen bonds. Rather, each amine H atom has a long (H...O ca 2.8 Å) interaction with one of the sulfone O atoms. Molecules of (III) are thus linked by amine–sulfone N—H...O hydrogen bonds into zigzag double chains running along [001]. Taken together, these structures demonstrate that small changes in the functionalization of ethylamine–nitroarenes cause significant differences in the intermolecular interactions and packing.  相似文献   

20.
π‐Extended TCBD‐porphyrins that contained a 1,1,4,4‐tetracyanobuta‐1,3‐diene unit were prepared by a highly efficient [2+2] cycloaddition of tetracyanoethene (TCNE) or 7,7,8,8‐tetracyano‐p‐quinodimethane (TCNQ) with meso‐substituted trans‐A2B2‐porphyrins that contained two phenylethynyl groups, followed by a retro‐electrocyclization reaction. Depending on the electronic properties of the arylethynyl groups, the cycloaddition reaction took place exclusively on either one or two ethynyl moieties with high yield. The addition of TCNQ proceeded with complete regioselectivity. The resulting π‐expanded TCBD‐porphyrins had a hypsochromically shifted Soret band and showed unique, broad absorption in the visible region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号