首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this paper we study the linked nonlinear multiparameter system
yrn(Xr) + MrYr + s=1k λs(ars(Xr) + Prs) Yr(Xr) = 0, r = l,…, k
, where xr? [ar, br], yr is subject to Sturm-Liouville boundary conditions, and the continuous functions ars satisfy ¦ A ¦ (x) = detars(xr) > 0. Conditions on the polynomial operators Mr, Prs are produced which guarantee a sequence of eigenfunctions for this problem yn(x) = Πr=1kyrn(xr), n ? 1, which form a basis in L2([a, b], ¦ A ¦). Here [a, b] = [a1, b1 × … × [ak, bk].  相似文献   

3.
For elliptic operators A = ∑¦α¦ ? m aα(x) Dα on Rn and certain of their singular perturbations B = ∑¦α¦ ? m bα(x)Dα relative compactness of B with respect to A is established. This result applies to the study of Lp-spectra of elliptic operators for different p.  相似文献   

4.
Results on partition of energy and on energy decay are derived for solutions of the Cauchy problem ?u?t + ∑j = 1n Aj?u?xj = 0, u(0, x) = ?(x). Here the Aj's are constant, k × k Hermitian matrices, x = (x1,…, xn), t represents time, and u = u(t, x) is a k-vector. It is shown that the energy of Mu approaches a limit EM(?) as ¦ t ¦ → ∞, where M is an arbitrary matrix; that there exists a sufficiently large subspace of data ?, which is invariant under the solution group U0(t) and such that U0(t)? = 0 for ¦ x ¦ ? a ¦ t ¦ ? R, a and R depending on ? and that the local energy of nonstatic solutions decays as ¦ t ¦ → ∞. More refined results on energy decay are also given and the existence of wave operators is established, considering a perturbed equation E(x) ?u?t + ∑j = 1n Aj?u?xj = 0, where ¦ E(x) ? I ¦ = O(¦ x ¦?1 ? ?) at infinity.  相似文献   

5.
Let u(x, t) be the solution of utt ? Δxu = 0 with initial conditions u(x, 0) = g(x) and ut(x, 0) = ?;(x). Consider the linear operator T: ?; → u(x, t). (Here g = 0.) We prove for t fixed the following result. Theorem 1: T is bounded in Lp if and only if ¦ p?1 ? 2?1 ¦ = (n ? 1)?1and ∥ T?; ∥LαP = ∥?;∥LPwith α = 1 ?(n ? 1) ¦ p?1 ? 2?1 ¦. Theorem 2: If the coefficients are variables in C and constant outside of some compact set we get: (a) If n = 2k the result holds for ¦ p?1 ? 2?1 ¦ < (n ? 1)?1. (b) If n = 2k ? 1, the result is valid for ¦ p?1 ? 2?1 ¦ ? (n ? 1). This result are sharp in the sense that for p such that ¦ p?1 ? 2?1 ¦ > (n ? 1)?1 we prove the existence of ?; ? LP in such a way that T?; ? LP. Several applications are given, one of them is to the study of the Klein-Gordon equation, the other to the completion of the study of the family of multipliers m(ξ) = ψ(ξ) ei¦ξ¦ ¦ ξ ¦ ?b and finally we get that the convolution against the kernel K(x) = ?(x)(1 ? ¦ x ¦)?1 is bounded in H1.  相似文献   

6.
Let L be a finite-dimensional normed linear space and let M be a compact subset of L lying on one side of a hyperplane through 0. A measure of flatness for M is the number D(M) = inf{supf(x)f(y): x, y ? M}, where the infimum is over all f in L1 which are positive on M. Thus D(M) = 1 if M is flat, but otherwise D(M) > 1. On the other hand, let E(M) be a second measure on M defined as follows: If M is linearly independent, E(M) = 1. If M is linearly dependent, then (1) let Z be a minimal, linearly dependent subset of M; (2) partition Z into mutually exclusive subsets U = {u1, …, up} and V = {v1, …, vq} such that there exist positive coefficients ai and bi for which Σi = 1paiui = Σi = 1qbivi; (3) let r = max{Σi = 1p aiΣi = 1q bi, Σi = 1p biΣi = 1q ai}; (4) let E(M) be the supremum of all ratios r which can be formed by steps (1), (2) and (3). The main result of this paper is that these two measures are the same: D(M) = E(M). This result is then used to obtain results concerning the Banach distance-coefficient between an arbitrary finite-dimensional normed linear space and Hilbert space.  相似文献   

7.
A spectral representation for the self-adjoint Schrödinger operator H = ?Δ + V(x), x? R3, is obtained, where V(x) is a long-range potential: V(x) = O(¦ x ¦?(12)), grad V(x) = O(¦ x ¦?(32)), ΛV(x) = O(¦ x s?) (δ > 0), Λ being the Laplace-Beltrami operator on the unit sphere Ω. Namely, we shall construct a unitary operator F from PL2(R3) onto L2((0, ∞); L2(Ω)), P being the orthogonal projection onto the absolutely continuous subspace for H, such that for any Borel function α(λ),
(α(H)(Pf,g)=0 (α(λ)(Ff)(λ),(Fg)(λ))L2(ω) dλ
.  相似文献   

8.
For a > 0 let ψa(x, y) = ΣaΩ(n), the sum taken over all n, 1 ≤ nx such that if p is prime and p|n then a < py. It is shown for u < about (log log xlog log log x) that ψa(x, x1u) ? x(log x)a?1pa(u), where pa(u) solves a delay differential equation much like that for the Dickman function p(u), and the asymptotic behavior of pa(u) is worked out.  相似文献   

9.
New and more elementary proofs are given of two results due to W. Littman: (1) Let n ? 2, p ? 2n(n ? 1). The estimate ∫∫ (¦▽u¦p + ¦ut¦p) dx dt ? C ∫∫ ¦□u¦p dx dt cannot hold for all u?C0(Q), Q a cube in Rn × R, some constant C. (2) Let n ? 2, p ≠ 2. The estimate ∫ (¦▽(t)¦p + ¦ut(t)¦p) dx ? C(t) ∫ (¦▽u(0)¦p + ¦ut(0)¦p) dx cannot hold for all C solutions of the wave equation □u = 0 in Rn x R; all t ?R; some function C: RR.  相似文献   

10.
The author discusses the best approximate solution of the functional differential equation x′(t) = F(t, x(t), x(h(t))), 0 < t < l satisfying the initial condition x(0) = x0, where x(t) is an n-dimensional real vector. He shows that, under certain conditions, the above initial value problem has a unique solution y(t) and a unique best approximate solution p?k(t) of degree k (cf. [1]) for a given positive integer k. Furthermore, sup0?t?l ¦ p?k(t) ? y(t)¦ → 0 as k → ∞, where ¦ · ¦ is any norm in Rn.  相似文献   

11.
A set {b1,b2,…,bi} ? {1,2,…,N} is said to be a difference intersector set if {a1,a2,…,as} ? {1,2,…,N}, j > ?N imply the solvability of the equation ax ? ay = b′; the notion of sum intersector set is defined similarly. The authors prove two general theorems saying that if a set {b1,b2,…,bi} is well distributed simultaneously among and within all residue classes of small moduli then it must be both difference and sum intersector set. They apply these theorems to investigate the solvability of the equations (ax ? ayp = + 1, (au ? avp) = ? 1, (ar + asp) = + 1, (at + azp) = ? 1 (where (ap) denotes the Legendre symbol) and to show that “almost all” sets form both difference and sum intersector sets.  相似文献   

12.
Let {Fr}0?r?p be a family of Banach spaces satisfying, if 0?r1?r2?p, (i)Fr1 ? Fr2; (ii)¦f¦r1 ? ¦f¦r2 (f ? Fr1); and (iii)?(r) = ln(¦f¦r) is a convex function. Let G0 be a Banach space and. F be a Gâteaux differentiate mapping, and suppose that F′(x)(Fp) is dense in G0. Under appropriate assumptions, the equation F(x)=0 has a solution in Fr for 0?r?p. The results extend the Inverse Function Theorem of J. Moser to the class of Gâteaux differentiable operators.  相似文献   

13.
Consider an elliptic sesquilinear form defined on V × V by J[u, v] = ∫Ωajk?u?xk\?t6v?xj + ak?u?xkv? + αju\?t6v?xj + auv?dx, where V is a closed subspace of H1(Ω) which contains C0(Ω), Ω is a bounded Lipschitz domain in Rn, ajk, ak, αj, a ? L(Ω), and Re ajkζkζj ? κ > 0 for all ζ?Cn with ¦ζ¦ = 1. Let L be the operator with largest domain satisfying J[u, v] = (Lu, v) for all υ∈V. Then L + λI is a maximal accretive operator in L2(Ω) for λ a sufficiently large real number. It is proved that (L + λI)12 is a bounded operator from V to L2(Ω) provided mild regularity of the coefficients is assumed. In addition it is shown that if the coefficients depend differentiably on a parameter t in an appropriate sense, then the corresponding square root operators also depend differentiably on t. The latter result is new even when the forms J are hermitian.  相似文献   

14.
Consider the exterior boundary value problem (▽2 + K2) u = 0, in Ω, k >0. Γ = h, where Γ is a smooth closed connected surface in R3, u ~ exp(ik ¦x¦)¦x¦?1 ∝(k, n) as¦X¦→ ∞, n = x¦x¦?1, ∝ is called the radiation pattern. We prove that when h runs through any dense set in L2(Γ) the corresponding radiation pattern ∝(k,n) runs through a dense set in L2(S2) for any k >0, where S2 is the unit sphere in R3.  相似文献   

15.
In this paper we study the behavior of solutions of some quasilinear parabolic equations of the form
(?u?t) ? i=1n (ddxi) ai(x, t, u, ux) + a(x, t, u, ux)u + f(x, t) = O,
as t → ∞. In particular, the solutions of these equations will decay to zero as t → ∞ in the L norm.  相似文献   

16.
We consider a real semi-simple Lie group G with finite center and a maximal compact sub-group K of G. Let G=Kexp(a+)K be a Cartan decomposition of G. For xG denote ∥x∥ the norm of the a+-component of x in the Cartan decomposition of G. Let a>0,b>0 and 1?p,q?∞. In this Note we give necessary and sufficient conditions on a,b such that for all K-bi-invariant measurable function f on G, if eax2fLp(G) and eb∥λ∥2F(f)∈Lq(a+1) then f=0 almost everywhere. To cite this article: S. Ben Farah, K. Mokni, C. R. Acad. Sci. Paris, Ser. I 336 (2003).  相似文献   

17.
The main result of this paper is that if F is a closed subset of the unit circle, then (H + LF)H is an M-ideal of LH. Consequently, if ? ∈ L then ? has a closest element in H + LF. Furthermore, if ¦F¦ >0 thenL(H + LF) is not the dual of any Banach space.  相似文献   

18.
In a recent paper [3] the authors derived maximum principles which involved u(x) and q = ¦grad, where u(x) is a classical solution of an alliptic differential equation of the form (g(q2)u,i),i + ?(u) ?(q2) = 0. In this paper these results are extended to the more general case in which g = g(u, q2) and ?(u) ?(q2) is replaced by h(u, q2).  相似文献   

19.
The integral formulation of the Navier-Stokes initial value problem for boundary-free, incompressible fluid flow is used to establish Volterra integral inequalities on the physical velocity field uμ(x, t). Standard comparison theorems for Volterra equations are then applied to obtain weakly singular, nonlinear Volterra equations of the second kind for upper bounds on ¦ uμ(x, t)¦. With local existence and uniqueness guaranteed and smoothness of solutions characterized by results on Volterra equations, solutions for bounds may be obtained by standard analytical and numerical methods. A specific example is considered. Existence and uniqueness of local solutions uμ(x, t) to the Navier-Stokes problem is then guaranteed within the radius of convergence of bounds on ¦ uμ(x, t)¦, thereby precluding local breakdown phenomena. In addition, bounds on ¦ uμ(x, t)¦ are used to obtain improved duration times for convergence of local iteration solutions for uμ(x, t). Finally, a new technique for establishing sufficient conditions for global existence, based on successive application of Volterra comparison theorems, is indicated.  相似文献   

20.
Elliptic operators A = ∑¦α¦ ? m bα(x) Dα, α a multi-index, with leading term positive and constant coefficient, and with lower order coefficients bα(x) ? Lrα + Lα (with (nrα) + ¦α¦ < m) defined on Rn or a quotient space RnRnUα, Uα? Rn are considered. It is shown that the Lp-spectrum of A is contained in a “parabolic region” Ω of the complex plane enclosing the positive real axis, uniformly in p. Outside Ω, the kernel of the resolvent of A is shown to be uniformly bounded by an L1 radial convolution kernel. Some consequences are: A can be closed in all Lp (1 ? p ? ∞), and is essentially self-adjoint in L2 if it is symmetric; A generates an analytic semigroup e?tA in the right half plane, strongly Lp and pointwise continuous at t = 0. A priori estimates relating the leading term and remainder are obtained, and summability φ(εA)?→ε → 0φ(0) ?, with φ analytic, is proved for ? ? Lp, with convergence in Lp and on the Lebesgue set of ?. More comprehensive summability results are obtained when A has constant coefficients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号