首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let \(G=(V,E)\) be a graph. A subset \(S\subseteq V\) is a k-dominating set of G if each vertex in \(V-S\) is adjacent to at least k vertices in S. The k-domination number of G is the cardinality of the smallest k-dominating set of G. In this paper, we shall prove that the 2-domination number of generalized Petersen graphs \(P(5k+1, 2)\) and \(P(5k+2, 2)\), for \(k>0\), is \(4k+2\) and \(4k+3\), respectively. This proves two conjectures due to Cheng (Ph.D. thesis, National Chiao Tung University, 2013). Moreover, we determine the exact 2-domination number of generalized Petersen graphs P(2kk) and \(P(5k+4,3)\). Furthermore, we give a good lower and upper bounds on the 2-domination number of generalized Petersen graphs \(P(5k+1, 3), P(5k+2,3)\) and \(P(5k+3, 3).\)  相似文献   

2.
A cyclic sequence of elements of [n] is an (nk)-Ucycle packing (respectively, (nk)-Ucycle covering) if every k-subset of [n] appears in this sequence at most once (resp. at least once) as a subsequence of consecutive terms. Let \(p_{n,k}\) be the length of a longest (nk)-Ucycle packing and \(c_{n,k}\) the length of a shortest (nk)-Ucycle covering. We show that, for a fixed \(k,p_{n,k}={n\atopwithdelims ()k}-O(n^{\lfloor k/2\rfloor })\). Moreover, when k is not fixed, we prove that if \(k=k(n)\le n^{\alpha }\), where \(0<\alpha <1/3\), then \(p_{n,k}={n\atopwithdelims ()k}-o({n\atopwithdelims ()k}^\beta )\) and \(c_{n,k}={n\atopwithdelims ()k}+o({n\atopwithdelims ()k}^\beta )\), for some \(\beta <1\). Finally, we show that if \(k=o(n)\), then \(p_{n,k}={n\atopwithdelims ()k}(1-o(1))\).  相似文献   

3.
Let k be a positive integer, x a large real number, and let \(C_n\) be the cyclic group of order n. For \(k\le n\le x\) we determine the mean average order of the subgroups of \(C_n\) generated by k distinct elements and we give asymptotic results of related averaging functions of the orders of subgroups of cyclic groups. The average order is expressed in terms of Jordan’s totient functions and Stirling numbers of the second kind. We have the following consequence. Let k and x be as above. For \(k\le n\le x\), the mean average proportion of \(C_n\) generated by k distinct elements approaches \(\zeta (k+2)/\zeta (k+1)\) as x grows, where \(\zeta (s)\) is the Riemann zeta function.  相似文献   

4.
5.
In this paper we identify strong facet defining inequalities for the master knapsack polytope. Our computational experiments for small master knapsack problems show that 1 / k-facets for small values of k (\(k\le 4\)) are strong facets for the knapsack polytope. We show that this finding is robust by proving that the removal of these facets from the master knapsack polytope significantly weakens the resulting relaxation in the worst case. We show that the 1 / k-facets for \(k = 1\) are the strongest in that their removal from the master knapsack polytope weakens the relaxation by a factor of 3 / 2 in the worst case. We then show that the 1 / k-facets with \(k = 3\) or 4 are the next strongest. We also show that the strength of the 1 / k-facets weakens as k grows and that the 1 / k-facets with k even are stronger than the 1 / k-facets with k odd.  相似文献   

6.
Let q be a power of a prime p, and let \(r=nk+1\) be a prime such that \(r\not \mid q\), where n and k are positive integers. Under a simple condition on q, r and k, a Gauss period of type (nk) is a normal element of \({\mathbb {F}}_{q}^{n}\) over \({\mathbb {F}}_q\); the complexity of the resulting normal basis of \({\mathbb {F}}_{q}^{n}\) over \({\mathbb {F}}_q\) is denoted by C(nkp). Recent works determined C(nkp) for \(k\le 7\) and all qualified n and q. In this paper, we show that for any given \(k>0\), C(nkp) is given by an explicit formula except for finitely many primes \(r=nk+1\) and the exceptional primes are easily determined. Moreover, we describe an algorithm that allows one to compute C(nkp) for the exceptional primes \(r=nk+1\). Our numerical results cover C(nkp) for \(k\le 20\) and all qualified n and q.  相似文献   

7.
We show that if a modular cuspidal eigenform f of weight 2k is 2-adically close to an elliptic curve \(E/\mathbb {Q}\), which has a cyclic rational 4-isogeny, then n-th Fourier coefficient of f is non-zero in the short interval \((X, X + cX^{\frac{1}{4}})\) for all \(X \gg 0\) and for some \(c > 0\). We use this fact to produce non-CM cuspidal eigenforms f of level \(N>1\) and weight \(k > 2\) such that \(i_f(n) \ll n^{\frac{1}{4}}\) for all \(n \gg 0\).  相似文献   

8.
In this paper, we study the k-quasi-M-hyponormal operator and mainly prove that if T is a k-quasi-M-hyponormal operator, then \(\sigma _{ja}(T)\backslash \{0\}=\sigma _{a}(T)\backslash \{0\}\), and the spectrum is continuous on the class of all k-quasi-M-hyponormal operators; let \(d_{AB}\in B(B(H))\) denote either the generalized derivation \(\delta _{AB}= L_{A}-R_{B}\) or the elementary operator \(\Delta _{AB} =L_{A}R_{B}- I\), we show that if A and \(B^{*}\) are k-quasi-M-hyponormal operators, then \(d_{AB}\) is polaroid and generalized Weyl’s theorem holds for \(f(d_{AB})\), where f is an analytic function on \(\sigma (d_{AB})\) and f is not constant on each connected component of the open set U containing \(\sigma (d_{AB})\). In additon, we discuss the hyperinvariant subspace problem for k-quasi-M-hyponormal operators.  相似文献   

9.
This paper considers the problem of positive semidefinite factorization (PSD factorization), a generalization of exact nonnegative matrix factorization. Given an m-by-n nonnegative matrix X and an integer k, the PSD factorization problem consists in finding, if possible, symmetric k-by-k positive semidefinite matrices \(\{A^1,\ldots ,A^m\}\) and \(\{B^1,\ldots ,B^n\}\) such that \(X_{i,j}=\text {trace}(A^iB^j)\) for \(i=1,\ldots ,m\), and \(j=1,\ldots ,n\). PSD factorization is NP-hard. In this work, we introduce several local optimization schemes to tackle this problem: a fast projected gradient method and two algorithms based on the coordinate descent framework. The main application of PSD factorization is the computation of semidefinite extensions, that is, the representations of polyhedrons as projections of spectrahedra, for which the matrix to be factorized is the slack matrix of the polyhedron. We compare the performance of our algorithms on this class of problems. In particular, we compute the PSD extensions of size \(k=1+ \lceil \log _2(n) \rceil \) for the regular n-gons when \(n=5\), 8 and 10. We also show how to generalize our algorithms to compute the square root rank (which is the size of the factors in a PSD factorization where all factor matrices \(A^i\) and \(B^j\) have rank one) and completely PSD factorizations (which is the special case where the input matrix is symmetric and equality \(A^i=B^i\) is required for all i).  相似文献   

10.
Schrijver (Nieuw Archief voor Wiskunde, 26(3) (1978) 454–461) identified a family of vertex critical subgraphs of the Kneser graphs called the stable Kneser graphs \(SG_{n,k}\). Björner and de Longueville (Combinatorica 23(1) (2003) 23–34) proved that the neighborhood complex of the stable Kneser graph \(SG_{n,k}\) is homotopy equivalent to a k-sphere. In this article, we prove that the homotopy type of the neighborhood complex of the Kneser graph \(KG_{2,k}\) is a wedge of \((k+4)(k+1)+1\) spheres of dimension k. We construct a maximal subgraph \(S_{2,k}\) of \(KG_{2,k}\), whose neighborhood complex is homotopy equivalent to the neighborhood complex of \(SG_{2,k}\). Further, we prove that the neighborhood complex of \(S_{2,k}\) deformation retracts onto the neighborhood complex of \(SG_{2,k}\).  相似文献   

11.
We consider Gillette’s two-person zero-sum stochastic games with perfect information. For each \(k \in \mathbb {N}=\{0,1,\ldots \}\) we introduce an effective reward function, called k-total. For \(k = 0\) and 1 this function is known as mean payoff and total reward, respectively. We restrict our attention to the deterministic case. For all k, we prove the existence of a saddle point which can be realized by uniformly optimal pure stationary strategies. We also demonstrate that k-total reward games can be embedded into \((k+1)\)-total reward games.  相似文献   

12.
Let k be a field and \(k(x_0,\ldots ,x_{p-1})\) be the rational function field of p variables over k where p is a prime number. Suppose that \(G=\langle \sigma \rangle \simeq C_p\) acts on \(k(x_0,\ldots ,x_{p-1})\) by k-automorphisms defined as \(\sigma :x_0\mapsto x_1\mapsto \cdots \mapsto x_{p-1}\mapsto x_0\). Denote by P the set of all prime numbers and define \(P_0=\{p\in P:\mathbb {Q}(\zeta _{p-1})\) is of class number one\(\}\) where \(\zeta _n\) a primitive n-th root of unity in \(\mathbb {C}\) for a positive integer n; \(P_0\) is a finite set by Masley and Montgomery (J Reine Angew Math 286/287:248–256, 1976). Theorem. Let k be an algebraic number field and \(P_k=\{p\in P: p\) is ramified in \(k\}\). Then \(k(x_0,\ldots ,x_{p-1})^G\) is not stably rational over k for all \(p\in P\backslash (P_0\cup P_k)\).  相似文献   

13.
Denote by \({{\mathcal {G}}}_k(V)\) the Grassmannian of the k-subspaces of a vector space V over a field \({\mathbb {K}}\). There is a natural correspondence between hyperplanes H of \({\mathcal {G}}_k(V)\) and alternating k-linear forms on V defined up to a scalar multiple. Given a hyperplane H of \({{\mathcal {G}}_k}(V)\), we define a subspace \(R^{\uparrow }(H)\) of \({{\mathcal {G}}_{k-1}}(V)\) whose elements are the \((k-1)\)-subspaces A such that all k-spaces containing A belong to H. When \(n-k\) is even, \(R^{\uparrow }(H)\) might be empty; when \(n-k\) is odd, each element of \({\mathcal {G}}_{k-2}(V)\) is contained in at least one element of \(R^{\uparrow }(H)\). In the present paper, we investigate several properties of \(R^{\uparrow }(H)\), settle some open problems and propose a conjecture.  相似文献   

14.
It is proved that every non-complete, finite digraph of connectivity number k has a fragment F containing at most k critical vertices. The following result is a direct consequence: every k-connected, finite digraph D of minimum out- and indegree at least \(2k+ m- 1\) for positive integers k, m has a subdigraph H of minimum outdegree or minimum indegree at least \(m-1\) such that \(D - x\) is k-connected for all \(x \in V(H)\). For \(m = 1\), this implies immediately the existence of a vertex of indegree or outdegree less than 2k in a k-critical, finite digraph, which was proved in Mader (J Comb Theory (B) 53:260–272, 1991).  相似文献   

15.
The anti-Ramsey number, AR(nG), for a graph G and an integer \(n\ge |V(G)|\), is defined to be the minimal integer r such that in any edge-colouring of \(K_n\) by at least r colours there is a multicoloured copy of G, namely, a copy of G that each of its edges has a distinct colour. In this paper we determine, for large enough \(n,\, AR(n,L\cup tP_2)\) and \(AR(n,L\cup kP_3)\) for any large enough t and k, and a graph L satisfying some conditions. Consequently, we determine AR(nG), for large enough n, where G is \(P_3\cup tP_2\) for any \(t\ge 3,\, P_4\cup tP_2\) and \(C_3\cup tP_2\) for any \(t\ge 2,\, kP_3\) for any \(k\ge 3,\, tP_2\cup kP_3\) for any \(t\ge 1,\, k\ge 2\), and \(P_{t+1}\cup kP_3\) for any \(t\ge 3,\, k\ge 1\). Furthermore, we obtain upper and lower bounds for AR(nG), for large enough n, where G is \(P_{k+1}\cup tP_2\) and \(C_k\cup tP_2\) for any \(k\ge 4,\, t\ge 1\).  相似文献   

16.
Edge-colourings of graphs have been studied for decades. We study edge-colourings with respect to hereditary graph properties. For a graph G, a hereditary graph property P and l ? 1 we define \(X{'_{P,l}}\)(G) to be the minimum number of colours needed to properly colour the edges of G, such that any subgraph of G induced by edges coloured by (at most) l colours is in P. We present a necessary and sufficient condition for the existence of \(X{'_{P,l}}\)(G). We focus on edge-colourings of graphs with respect to the hereditary properties Ok and Sk, where Ok contains all graphs whose components have order at most k+1, and Sk contains all graphs of maximum degree at most k. We determine the value of \(X{'_{{S_k},l}}(G)\) for any graph G, k ? 1, l ? 1, and we present a number of results on \(X{'_{{O_k},l}}(G)\).  相似文献   

17.
Here we show that every normal band N can be embedded into the normal band \(\mathcal {B(S)}\) of all k-bi-ideals, the left part \(N/ \mathcal {R}\) of N into the left normal band \(\mathcal {R(S)}\) of all right k-ideals, the right part \(N/ \mathcal {L}\) of N into the right normal band \(\mathcal {L(S)}\) of all left k-ideals, and the greatest semilattice homomorphic image \(N/ \mathcal {J}\) of N into the semilattice of all k-ideals of a same k-regular and intra k-regular semiring S.  相似文献   

18.
In this paper we give an explicit construction of basis matrices for a (kn)-visual cryptography scheme \((k,n){\hbox {-}}\mathrm{VCS}\) for integers k and n with \(2\le k \le n\). In balanced VCS every set of participants with equal cardinality has same relative contrast. The VCS constructed in this paper is a balanced \((k,n){\hbox {-}}\mathrm{VCS}\) for general k. Also we obtain a formula for pixel expansion and relative contrast. We also prove that our construction gives optimal contrast and minimum pixel expansion when \(k=n\) and \(n-1\).  相似文献   

19.
For \(x>0\), let \(\pi (x)\) denote the number of primes not exceeding x. For integers a and \(m>0\), we determine when there is an integer \(n>1\) with \(\pi (n)=(n+a)/m\). In particular, we show that, for any integers \(m>2\) and \(a\leqslant \lceil e^{m-1}/(m-1)\rceil \), there is an integer \(n>1\) with \(\pi (n)=(n+a)/m\). Consequently, for any integer \(m>4\), there is a positive integer n with \(\pi (mn)=m+n\). We also pose several conjectures for further research; for example, we conjecture that, for each \(m=1,2,3,\ldots \), there is a positive integer n such that \(m+n\) divides \(p_m+p_n\), where \(p_k\) denotes the k-th prime.  相似文献   

20.
Motivated by a partition inequality of Bessenrodt and Ono, we obtain analogous inequalities for k-colored partition functions \(p_{-k}(n)\) for all \(k\ge 2\). This enables us to extend the k-colored partition function multiplicatively to a function on k-colored partitions and characterize when it has a unique maximum. We conclude with one conjectural inequality that strengthens our results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号