首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this paper is to examine the potential of three binary borate glasses; namely PbOB2O3, K2OB2O3 and Li2OB2O3 as candidates for fabrication of low optical loss and low cost fiber-glass wave-guides.The importance of ultrasonic measurements as the first step in a systematic search for a glass with low optical loss, is discussed. Results of ultrasonic measurements of PbOB2O3 system are then presented. Using these results and the published results for the K2OB2O3 and Li2OB2O3 systems, estimates of the magnitude of density fluctuations as a function of composition have been made for each system. Comparison with the previously published results on the K2OSiO2 system suggests that out of the three systems chosen, only 50 mole % Li2O50 mole % B2O3 glass is a likely candidate for the production of low optical loss glass fibers.  相似文献   

2.
The optical absorption spectra of cobalt (II) in Tl2OB2O3 glasses have been studied and compared with those in binary alkali borate glasses. In thallium borate glasses cobalt (II) may be present in octahedral and/or in tetrahedral symmetry depending upon the composition of the glass. In low thallium borate glasses cobalt (II) is octahedral while the concentration of tetrahedral cobalt (II) increases with increasing Tl2O content of the glass; the formation of tetrahedral cobalt (II) becomes noticeable when the concentration of Tl2O reaches above the critical concentration of about 19 mol %. The ligand field parameters: 10Dq and B have been calculated from the absorption spectra of cobalt (II) in different glasses and it has been found that the Racah parameter, B, is more in Tl2OB2O3 glasses than those in Na2OB2O3 or K2OB2O3 glasses of corresponding molar composition. This indicates that the donor capacity of the BO4 group in thallium borate glasses is lower than that in alkali borate glasses; this is consistent with the NMR results in Tl2OB2O3 glasses containing less than 20 mol % Tl2O where three BO4 groups have been found to form with each Tl2O unit added.  相似文献   

3.
The correlation between the basicity of oxygens measured by the Cu(II) ion probe and the non-bonding electron density on oxygens in alkali borate glasses was considered. The basicity was measured for K2OB2O3, Na2OP2O5 and K2SO4ZnSO4 glasses and categorized into two types, δ and π, according to the symmetry property of the bonding between a Cu(II) ion and oxygen. The π basicity for borate and phosphate glasses showed an abrupt increase in the vicinity of 17 and 50 mol% alkali oxide, respectively. The values of π-type basicity varied with the composition of glass, being larger in the order: sulfate < phosphate ? borate, whereas δ basicity was constant irrespective of the glass composition. Such a change of the basicity with the composition of glass was interpreted in terms of behavior of non-bonding levels of the ligand oxygens in a glass network.  相似文献   

4.
Wenlong Yao 《Journal of Non》2008,354(18):2045-2053
The structure and properties of glasses in the MI + M2S + (0.1Ga2S3 + 0.9GeS2), M = Li, Na, K and Cs, system were studied using Raman, IR spectroscopy, DSC and density measurements to help better understand the ionic transport in these glasses. The glass forming ranges of these ternary glasses were compared to those of the binary alkali sulfide and germanium sulfide systems. The more extensive glass forming range in the Na2S system was used to examine the more extensive changes of structure and properties of these glasses as a function of Na2S content. As expected, non-bridging sulfurs (NBS) form with the addition of alkali sulfide. Unlike their oxide counterparts, however, the alkali sulfide doped glasses appear to support longer-range super-structural units. For example, evidence that the adamantine-like structure exists in the K2S and Cs2S modified glasses is found in the Raman spectra of the glasses. The structural role of the alkali iodide addition was also explored since the addition of alkali iodide helps to improve the conductivity. For most of these glasses, as observed in many other oxide glasses, the added MI dissolves interstitially into the glass structure network without changing the alkali sulfide network structure. In 0.6Na2S + 0.4(0.1Ga2S3 + 0.9GeS2) glasses, however, the added NaI may affect the glass structure as it causes systematic changes in the frequency of the Ge-S network mode as seen in the Raman spectra.  相似文献   

5.
Glasses with composition xLi2O-(30 ? x)Na2O–10WO3–60B2O3 (where x = 0, 5, 10, 15, 20, 25 and 30 mol%) have been prepared using the melt quenching technique. In the present work, the mixed alkali effect (MAE) has been investigated in the above glass system through density and modulated DSC studies. The density and glass transition temperature of the present gasses varies non-linearly, the exhibiting the mixed alkali effect. From the optical absorption studies, the values of direct optical band gap, indirect optical band gap energy (Eo) and Urbach energy(ΔE) have been evaluated. The values of Eo and ΔE vary non-linearly with composition parameter, showing the mixed alkali effect. The electronic polarizability of oxide ions, optical basicity and the Yamashita–Kurosawa's interaction parameter have been examined to check the correlation among them and bond character. Based on good correlation among electronic polarizability of oxide ions, optical basicity and the Yamashita–Kurosawa's interaction parameter, the present Li2O–Na2O–WO3–B2O3 glasses were classified as normal ionic (basic) oxides.  相似文献   

6.
Measurements of two-photon absorption (TPA) coefficients β at 532 nm in binary Bi2O3:B2O3 glasses are reported. The β obtained ranges from 12.9 to 16.4 cm/GW with the larger value observed in higher Bi2O3 glass. The relationship between β and glass composition is discussed in terms of the electronic structure of glasses: β can be scaled with optical band gap.  相似文献   

7.
The effect of optical basicity on Er3+ up-conversion luminescence in germanate glasses is investigated under 980 nm excitation. The intensity of green and red up-conversion luminescence decreased with the increase in radius of alkali ion or Li2O content, implying that up-conversion luminescence strongly relates to the optical basicity of glass host. On the other hand, as increasing the optical basicity, the red emission intensity decreased significantly, while the green emission intensity decreased slightly. It has been proposed that the up-conversion luminescence intensity was dominated by the optical basicity, which theoretically estimated from glass composition. The interaction mechanism between up-conversion process and optical basicity was proposed.  相似文献   

8.
In the binary system Bi2O3 – B2O3 glasses were prepared in the composition range 57.5 mol% ‐ 80 mol% B2O3 by defined slow cooling of large melt samples (about 75 cm3, each). Temperatures of crystallization, of melting and of glass transition were determined and density data of the glasses were derived using the hydrostatic weighting method. Thermal expansion coefficients and high precision refractive indices, together with their dispersion, were measured. The measured physical properties indicate subtle discontinuous structural changes of the glasses with glass composition, that match with the ranges of existence of the crystalline compounds of the binary system Bi2O3 – B2O3. Thermal investigations together with X‐ray powder diffraction analyses of crystallized glass samples prove the so far doubtful existence of a borate compound named “BiBO3” in the PDF within the composition range 52.5 – 57.5 mol% B2O3.  相似文献   

9.
Cr3+-containing alkali, alkaline earth and mixed alkali-alkaline earth silicate glasses have been investigated using Cr K-edge extended x-ray absorption fine structure (EXAFS) and optical absorption spectroscopy. The local environment of Cr3+ appears similar in all glasses regarding EXAFS analysis, in particular for Cr-O distance (1.99 Å). By contrast, optical absorption spectra show variations of crystal field values and disorder effects with the nature of the modifier cation, revealing that some differences exist in the local surrounding of Cr3+ in glasses. In addition, in mixed alkali-alkaline earth glasses optical absorption parameters remain close to the values found in binary silicate glasses with the same alkali, which reveals a preference for alkalis in the surrounding of Cr3+. As a whole, these data show that Cr3+ is not probing the average glass structure and demonstrate its heterogeneous distribution at a local scale.  相似文献   

10.
The correlation factor in the Nernst-Einstei equation for low sodium Na2OGeO2 glass determined from dc conductivity and 22Na diffusion coefficient measurements was found to be near unity. Values of the correlation factor were also compiled from the literature for higher alkali content germanate glasses as well as for sodium borate and alkali silicate glasses. In all three systems the correlation factor was found to depend primarily on the alkali content in the glass. Specifically, uncorrelated ionic diffusion (? ? 1) occurs in low alkali glasses while correlated motion (? < 1) takes place at higher alkali concentrations. This observation is consistent with the theory that many “holes” exist in low alkali glasses through which the diffusing cation can randomly jump.  相似文献   

11.
The kinetics of K+ ? Na+ exchange in two glass systems, 20Na2O·(60?x)B2O3· (20 + x)Si2 (where x = 0, 15, 30 and 45 mol%) and Na2O·3SiO2, were studied as a function of glass composition, salt bath composition, exchange temperature and time The distribution of K in the glass specimens after exchange in molten KNO3 was determined with an electron probe. Stresses in these speciments were measured photoelastically. The interdiffusion coefficient D for ion exchange was calculated as a function of local composition in the glass using the Boltzmann-Matano method. The strong variation of D in any particular glass approximated that predicted by a mixed alkali model (as advanced by Lacharme), where the glass in the ion-exchanged region approximates a composite of stacked layers of mixed alkali glasses with a gradually varying alkali ratio. The small discrepancy between the experiment and the mixed alkali model was partly, but not fully, reconciled by considering the strains in the glasses. The observation which remained unexplained was that the calculated stress profiles did not show perfect agreement, both in magnitude and in shape, with the experimentally measured stress profiles. It appeared that the kinetics of ion exchange in the glasses were also influenced by a network relaxation process which may have occurred well below the glass transition temperature.  相似文献   

12.
Rates of crystal nucleation in alkali disilicate glasses were measured by counting the number of crystals under an optical microscope. The viscosities of these glasses were measured by the method of beam-bending and penetration. Using the data of rate of nucleation and viscosity obtained in the present study and the data of free energy measured by Takahashi and Yoshio, crystal-glass interfacial energies for alkali disilicate systems were estimated on the basis of homogeneous nucleation theory as follows: 196 erg/cm2 for Li2O·2SiO2, 126–144 erg/cm2 for Na2O·2SiO2 and 88–104 erg/cm2 for K2O·2SiO2. The effects of the viscosity of glass, the free energy difference between crystal and glass and crystal-glass interfacial energy on the rate of nucleation were discussed, and the remarkably higher rate of crystal nucleation in the Li2O·2SiO2 glass was attributed to the larger free energy difference.  相似文献   

13.
Optical basicities (Γ) for Cs2O + B2O3 and Li2O + B2O3 glasses have been measured as a function of glass composition, using Tl+, Pb2+ and Bi3+ probe ions. The three probe ions register different values of Γ for glasses of given composition (and also for pure B2O3 glass and water). The divergence decreases as the alkali metal ion size decreases.For the Li2O + B2O3 glasses, ideal (calculated) optical basicities agree within experimental precision with experimental values registered by Pb2+Pb2+) up to about 15 mol% Li2O. For higher Li2O contents, and for the Cs2O + B2O3 glasses, ideal optical basicities agree less well with ΓPb2+, but show similar trends with composition to those shown by ΓPb2+.  相似文献   

14.
Raman spectra of some ternary and quaternary glasses in the system Na2OCaOMgOAl2O3SiO2 are presented. The spectra are interpreted in terms of the structural alteration of the glass as the composition is altered from the binary end members to more complicated glasses. Addition of CaO and MgO to soda-silica glasses act only to increase the disorder of the network slightly. Addition of Al2O3 greatly modifies the network. In some soda-lime-aluminosiliscate compositions an estimate can be made of the amount of aluminum in four- and six-fold coordination. It is shown that the amounts of four- and sixfold coordinated aluminum depend on the glass composition.  相似文献   

15.
The electrical conductivity of a series of 0.35 (Li, Na)2O·B2O3 glasses shows a minimum at the composition Na/(Na+Li)~0.6, which becomes stronger as the temperature is decreased; the activation enthalpy for electrical conductivity shows a maximum at this composition. In general, replacing 1% of the total oxygen concentration by chlorine or bromine (keeping the total alkali content fixed) in these glasses increases the conductivity; fluorine doping has an opposite effect. The mixed alkali effect, expressed in terms of the compositional dependence of the activation enthalpy for conductivity, is enhanced when borate glass is doped with fluorine, but is slightly diminished when doped with chlorine or bromine. The results are explained in terms of the structure of halogenated alkali-borate glasses, and discussed in relation to the origin of the mixed alkali effect.  相似文献   

16.
The SiKα and Kβ X-ray emission spectra of binary silicate glasses of the Li2O–SiO2, Na2O–SiO2, K2O–SiO2, Cs2O–SiO2, B2O3–SiO2, and GeO2–SiO2 systems were measured with an X-ray fluorescence spectrometer to examine the chemical effects on the spectra. The SiKα peak wavelengths for all the glasses agreed with that for SiO2 glass, which corresponded to the concept that the coordination number of Si shouldbe four in all the glasses examined in this study. The SiKβ peak wavelength decreased with increasing alkali content in the alkali silicate glasses, indicating that the Si–O bond weakend in average as the alkali oxide was added to SiO2 glass. On the other hand, no drastic shift in the SiKβ peak wavelength was observed in the B2O3–SiO2 and GeO2–SiO2 systems, and this was interpreted as showing the constancy of Si–O bond strength in these glasses.  相似文献   

17.
Conventional qualitative and quantitative IR-reflectance spectrum interpretation of glasses is discussed in light of new findings on the optics of polycrystalline materials and the close relation of the structure of crystallites and regions of medium range order in related glasses. According to these findings, a glass spectrum must not be compared in general with the spectrum of a related polycrystalline material, if the crystallite size exceeds the resolution limit of light. As a consequence of the similarities between the spectra of glassy and related polycrystalline compounds (optically small crystallites) and based on medium range order, the macroscopic optical properties of glasses result not only from disorder and fluctuations, but also from an orientational average of the optical properties of the medium range regions similar to the macroscopic optical properties of polycrystalline materials. Consequently, the assumption of cubic symmetry, which underlies all conventional types of dispersion analysis used for glasses, is inadequate. Based on ARIT (average refractive index theory), [Appl. Spectrosc. 56 (2002) 1194], which permits modeling the optical properties of polycrystalline materials with optically small crystallites, a method is proposed to generate artificial glass spectra from single crystal data. This method is particularly useful if polycrystalline bulk samples with optically small crystallites are not available, since it enables us to determine glass structure on a semi-quantitative level by comparing measured and artificial spectra. The value of the approach is demonstrated for fresnoite glass (Ba2TiSi2O8), Sr-fresnoite glass (Sr2TiSi2O8) and Ge-fresnoite glass (Ba2TiGe2O8). An important consequence of the assumption of an orientational average of the microscopic optical properties of medium range order regions is the prediction of the occurrence of mixed TO-LO modes in glasses. This is confirmed by the resemblance between peak shapes of model oscillators with large oscillator strengths and small damping constants and the prominent high wave number feature of vitreous silica.  相似文献   

18.
《Journal of Non》2001,279(2-3):97-109
The Raman spectra of binary xNa2S+(1−x)B2S3 glasses and polycrystals have been measured for the first time and are used to develop a structural model of the sodium thioborate glasses. The Raman spectra confirm our previous infrared (IR) experimental conclusions that the structure of vitreous (ν-B2S3) is comprised of B3(0) groups and six-membered rings. It was also found that as sodium sulfide is added to the glass in the low alkali (x<0.35) glass forming region, the B4 groups are formed at the expense of the B3(0) groups first and then from the six-membered ring groups. The Raman spectra are also consistent with the presence of a pyramidal structural arrangement of B4 groups with trigonally coordinated sulfur atoms. This structure could explain the existence of the super-stoichiometric amounts of B4 groups found using nuclear magnetic resonance (NMR). Glasses in the high alkali region (0.50<x<0.80) progressively change from being comprised of metathioborate rings to being comprised of B3(3) groups. The Raman spectra also confirms the IR spectra which saw no evidence of B3(2) groups in these sodium thioborate glasses.  相似文献   

19.
A. Koike 《Journal of Non》2008,354(28):3246-3253
Glass samples with same composition and properties but different thermal histories can exhibit different behavior upon a subsequent heat-treatment, a phenomenon known as the memory effect. Generally, it is considered that the memory effect is due to nanoscale density fluctuation, which exists in all glasses and causes non-exponential relaxation with more than one relaxation time. Earlier, we studied the memory effect of various silica glasses and found that some pure silica glasses did not exhibit the memory effect while some silica glasses with higher impurity contents exhibited the memory effect. Based upon this finding, we suggested that the phenomenon originated from concentration fluctuation rather than density fluctuation. In this study, the memory effect in 6 mol% K2O-94 mol% SiO2 glass was investigated. The K2O-SiO2 glass system has a metastable immiscibility below the glass transition temperature and the chosen glass composition is the critical composition corresponding to the estimated critical temperature of the immiscibility boundary. Thus, it is expected that this glass composition would exhibit large super-critical concentration fluctuation, which increases with decreasing heat-treatment temperature. Density fluctuation, on the other hand, increases with increasing heat-treatment temperature. A much larger memory effect was observed at the lower heat-treatment temperature for the present glass. This result supports our earlier contention that the origin of the memory effect is composition fluctuation rather than density fluctuation.  相似文献   

20.
T.M. Gross  A. Koike 《Journal of Non》2009,355(9):563-568
The crack initiation load of a series of calcium aluminosilicate glasses and selected commercial glasses were evaluated using Vickers indentation. The results showed that a calcium aluminosilicate glass containing 80 mol% SiO2, 10 mol% Al2O3 and 10 mol% CaO exhibited a high crack initiation load comparable to that of the less-brittle glass (LB glass) developed by Asahi Glass Co., Ltd. It has previously been determined that glasses experience a fictive temperature increase by indentation. The indented region of a glass, therefore, acquires, in general, different mechanical properties, such as hardness and elastic moduli, from the original, unindented glass. The extent of these mechanical property changes depends upon the glass composition and a certain glass composition with fictive temperature-independent mechanical properties can have the deformed region with matching mechanical properties to those of the undeformed region of the glass. It was found that the calcium aluminosilicate glass having no fictive temperature dependence on elastic moduli gave the highest crack initiation load. However, this composition did not coincide with fictive temperature-independence of hardness or density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号