首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction between alkyl radicals and graphene was studied by means of dispersion‐corrected density functional theory. The results indicate that isolated alkyl radicals are not likely to be attached onto perfect graphene. It was found that the covalent binding energies are low, and because of the large entropic contribution, Δ${G{{{\ominus}\hfill \atop 298\hfill}}}$ is positive for methyl, ethyl, isopropyl, and tert‐butyl radicals. Although the alkylation may proceed by moderate heating, the desorption barriers are low. For the removal of the methyl and tert‐butyl radicals covalently bonded to graphene, 15.3 and 2.4 kcal mol?1 are needed, respectively. When alkyl radicals are agglomerated, the binding energies are increased. For the addition in the ortho position and on opposite sides of the sheet, the graphene–CH3 binding energy is increased by 20 kcal mol?1, whereas for the para addition on the same side of the sheet, the increment is 9.4 kcal mol?1. In both cases, the agglomeration turns the Δ${G{{{\ominus}\hfill \atop 298\hfill}}}$ <0. For the ethyl radical, the ortho addition on opposite sides of the sheet has a negative Δ${G{{{\ominus}\hfill \atop 298\hfill}}}$ , whereas for isopropyl and tert‐butyl radicals the reactions are endergonic. The attachment of the four alkyl radicals under consideration onto the zigzag edges is exergonic. The noncovalent adsorption energies computed for ethyl, isopropyl, and tert‐butyl radicals are significantly larger than the graphene–alkyl‐radical covalent binding energies. Thus, physisorption is favored over chemisorption. As for the Δ${G{{{\ominus}\hfill \atop 298\hfill}}}$ for the adsorption of isolated alkyl radicals, only the tert‐butyl radical is likely to be exergonic. For the phenalenyl radical we were not able to locate a local minimum for the chemisorbed structure since it moves to the physisorbed structure. An important conclusion of this work is that the consideration of entropic effects is essential to investigate the interaction between graphene and free radicals.  相似文献   

2.
3.
4.
Absolute rate constants and some of their Arrhenius parameters are reported for the addition of the 1‐[(tert‐butoxy)carbonyl]ethyl radical (MeC . HCO2Me3) to several mono‐ or 1,1‐disubstituted alkenes in acetonitrile as obtained by time‐resolved electron spin resonance spectroscopy. At 295 K, the rate constants range from 470 M −1 s−1 (but‐1‐ene) to 2.4⋅105 M −1 s−1 (1,1‐diphenylethene), the experimental activation energies range from 26.8 kJ/mol (but‐1‐ene) to 14.7 kJ/mol (styrene), and the frequency factors obey on the average log (A/M −1 s−1)=7.9±0.5. The rate constants of the secondary 1‐[(tert‐butoxy)carbonyl]ethyl radical are close to the geometric mean of those of the related primary [(tert‐butoxy)carbonyl]methyl and the tertiary 2‐(methoxycarbonyl)propan‐2‐yl radicals. The activation energies for addition of these three carboxy‐substituted alkyl radicals are mainly governed by the addition enthalpy but are also substantially lowered by ambiphilic polar effects. The results support a previously derived predictive analysis, and relations to rate constants of acrylate polymerizations are discussed.  相似文献   

5.
The B3LYP, M06, M06L, M062X, MPW1K, and PBE1PBE DFT methods were evaluated for modeling nickel-catalyzed coupling reactions. The reaction consists of a nucleophilic attack by a carbanion equivalent on the nickel complex, S(N)2 attack by the anionic nickel complex on an alkyl halide, and reductive elimination of the coupled alkane product, regenerating the nickel catalyst. On the basis of CCSD(T)//DFT single-point energies, the B3LYP, M06, and PBE1PBE functionals were judged to generate the best ground state geometries. M06 energies are generally comparable or superior to B3LYP and PBE1PBE energies for transition state calculations. The MP2 and CCSD methods were also evaluated for single-point energies at the M06 geometries. The rate-determining step of this reaction was found to be nucleophilic attack of a L(2)NiR anion on the alkyl halide.  相似文献   

6.
Theoretical investigation on local electronic structure and stability of the π–π stacking interaction of pyrazinamide (PZA) with armchair (5,5) and zigzag (9,0) single‐walled carbon nanotubes (SWCNTs) is performed using density functional theory (DFT). PZA is physisorbed onto nanotube sidewall through interaction of π orbitals of PZA and SWCNT and the enhanced structural stability of PZA/SWCNT systems is due to weak side‐on rather than the head‐on π‐interactions. The physisorption of PZA onto SWCNT sidewall is thermodynamically favored; as a consequence, it modulates the electronic properties of pristine nanotube in the vicinity of Fermi region and π–π stacked interactions is stronger in (9,0) SWCNT compared to (5,5) SWCNT. The density of states (DOS) analysis show that PZA contributes toward the enhancement of electronic states. Projected DOS and frontier orbital analysis in the vicinity of Fermi level region suggest the electronic states to be contributed from SWCNT rather than PZA. In addition, hybrid DFT calculation which includes the dispersion correction is employed to explain the non‐covalent π–π stacking interaction between PZA and SWCNT. The local density approximation and GGA results are compared with DFT‐D to explain near about accurately the weak nonbonded van der Waals interactions between PZA and SWCNTs. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
The interaction between alkyl radicals and graphene was studied by means of dispersion-corrected density functional theory. The results indicate that isolated alkyl radicals are not likely to be attached onto perfect graphene. It was found that the covalent binding energies are low, and because of the large entropic contribution, ΔG(298)° is positive for methyl, ethyl, isopropyl, and tert-butyl radicals. Although the alkylation may proceed by moderate heating, the desorption barriers are low. For the removal of the methyl and tert-butyl radicals covalently bonded to graphene, 15.3 and 2.4?kcal mol(-1) are needed, respectively. When alkyl radicals are agglomerated, the binding energies are increased. For the addition in the ortho position and on opposite sides of the sheet, the graphene-CH(3) binding energy is increased by 20?kcal mol(-1), whereas for the para addition on the same side of the sheet, the increment is 9.4?kcal mol(-1). In both cases, the agglomeration turns the ΔG(298)°<0. For the ethyl radical, the ortho addition on opposite sides of the sheet has a negative ΔG(298)°, whereas for isopropyl and tert-butyl radicals the reactions are endergonic. The attachment of the four alkyl radicals under consideration onto the zigzag edges is exergonic. The noncovalent adsorption energies computed for ethyl, isopropyl, and tert-butyl radicals are significantly larger than the graphene-alkyl-radical covalent binding energies. Thus, physisorption is favored over chemisorption. As for the ΔG(298)° for the adsorption of isolated alkyl radicals, only the tert-butyl radical is likely to be exergonic. For the phenalenyl radical we were not able to locate a local minimum for the chemisorbed structure since it moves to the physisorbed structure. An important conclusion of this work is that the consideration of entropic effects is essential to investigate the interaction between graphene and free radicals.  相似文献   

8.
Amides are a class of highly stable and readily available compounds. The amide functional group constitutes a class of powerful directing/activating and protecting group for C? C bond formation. Tertiary tert‐alkylamine, including 1‐azaspirocycle is a key structural feature found in many bioactive natural products and pharmaceuticals. The transformation of amides into tert‐alkylamines generally requires several steps. In this paper, we report the full details of the first general method for the direct transformation of tertiary lactams/amides into tert‐alkylamines. The method is based on in situ activation of amide with triflic anhydride/2,6‐di‐tert‐butyl‐4‐methylpyridine (DTBMP), followed by successive addition of two organometallic reagents of the same or different kinds to form two C? C bonds. Both alkyl and functionalized organometallic reagents and enolates can be used as the nucleophiles. The method displayed excellent 1,2‐ and good 1,3‐asymmetric induction. Construction of 1‐azaspirocycles from lactams required only two steps or even one‐step by direct spiroannelation of lactams. The power of the method was demonstrated by a concise formal total synthesis of racemic cephalotaxine.  相似文献   

9.
The radical anion of octa‐tert‐butyloctasilacubane was generated and isolated. The EPR spectrum showed the satellites due to the tertiary 13C nuclei of the eight tert‐butyl groups. The X‐ray crystallographic analysis showed that the Si? Si bonds are shortened and the Si? C bonds are elongated compared with those of octa‐tert‐butyloctasilacubane. These results are well explained by the distribution of an unpaired electron in the singly occupied molecular orbital (SOMO).  相似文献   

10.
Density functional theory (DFT) based calculations are performed on a series of alkyl nitrites and nitroalkanes representing large‐scale primary, secondary, and tertiary nitro compounds and their radicals resulting from the loss of their skeletal hydrogen atoms. Geometries, vibration frequencies, and thermochemical properties [S°(T) and C°p(T) (10 K ? T ? 5000 K)] are calculated at the B3LYP/6‐31G(d,p) DFT level. Δf298 values are from B3LYP/6‐31G(d,p), B3LYP/6‐31+G(2d,2p), and the composite CBS‐QB3 levels. Potential energy barriers for the internal rotations have been computed at the B3LYP/6‐31G(d,p) level of theory, and the lower barrier contributions are incorporated into entropy and heat capacity data. The standard enthalpies of formation at 298 K are evaluated using isodesmic reaction schemes with several work reactions for each species. Recommended values derived from the most stable conformers of respective nitro‐ and nitrite isomers include ?30.57 and ?28.44 kcal mol?1 for n‐propane‐, ?33.89 and ?32.32 kcal mol?1 for iso‐propane‐, ?42.78 and ?41.36 kcal mol?1 for tert‐butane‐nitro compounds and nitrites, respectively. Entropy and heat capacity values are also reported for the lower homologues: nitromethane, nitroethane, and corresponding nitrites. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 181–199, 2010  相似文献   

11.
12.
Generally considered kinetic intermediates in addition reactions of alkyllithiums to pyridine, 1‐lithio‐2‐alkyl‐1,2‐dihydropyridines have been rarely isolated or characterized. This study develops their “isolated” chemistry. By a unique stoichiometric (that is, 1:1, alkyllithium/pyridine ratios) synthetic approach using tridentate donors we show it is possible to stabilize and hence crystallize monomeric complexes where alkyl is tert‐butyl. Theoretical calculations probing the donor‐free parent tert‐butyl species reveal 12 energetically similar stereoisomers in two distinct cyclotrimeric (LiN)3 conformations. NMR spectroscopy studies (including DOSY spectra) and thermal volatility analysis compare new sec‐butyl and iso‐butyl isomers showing the former is a hexane soluble efficient hydrolithiation agent converting benzophenone to lithium diphenylmethoxide. Emphasizing the criticalness of stoichiometry, reaction of nBuLi/Me6TREN with two equivalents of pyridine results in non‐alkylated 1‐lithio‐1,4‐dihydropyridine?Me6TREN and 2‐n‐butylpyridine, implying mechanistically the kinetic 1,2‐n‐butyl intermediate hydrolithiates the second pyridine.  相似文献   

13.
Density functionals with long‐range and/or empirical dispersion corrections, including LC‐ωPBE, B97‐D, ωB97X‐D, M06‐2X, B2PLYP‐D, and mPW2PLYP‐D functionals, are assessed for their ability to describe the conformational preferences of Ac‐Ala‐NHMe (the alanine dipeptide) and Ac‐Pro‐NHMe (the proline dipeptide) in the gas phase and in water, which have been used as prototypes for amino acid residues of peptides. For both dipeptides, the mean absolute deviation (MAD) is estimated to be 0.22–0.40 kcal/mol in conformational energy and 2.0–3.2° in torsion angles ? and ψ using these functionals with the 6‐311++G(d,p) basis set against the reference values calculated at the MP2/aug‐cc‐pVTZ//MP2/aug‐cc‐pVDZ level of theory in the gas phase. The overall performance is obtained in the order B2PLYP‐D ≈ mPW2PLYP‐D > ωB97X‐D ≈ M06‐2X > MP2 > LC‐ωPBE > B3LYP with the 6–311++G(d,p) basis set. The SMD model at the M06‐2X/6‐31+G(d) level of theory well reproduced experimental hydration free energies of the model compounds for backbone and side chains of peptides with MADs of 0.47 and 4.3 kcal/mol for 20 neutral and 5 charged molecules, respectively. The B2PLYP‐D/6‐311++G(d,p)//SMD M06‐2X/6‐31+G(d) level of theory provides the populations of backbone and/or prolyl peptide bond for the alanine and proline dipeptides in water that are consistent with the observed values. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

14.
4‐Nitro‐1,2,3‐triazole was found to react with tert‐butanol in concentrated sulfuric acid to yield 1‐tert‐butyl‐4‐nitro‐1,2,3‐triazole as the only reaction product, whereas tert‐butylation and tritylation of 4‐nitro‐1,2,3‐triazole in presence of catalytic amount of sulfuric acid in benzene was found to provide mixtures of isomeric 1‐ and 2‐alkyl‐4‐nitro‐1,2,3‐triazoles with predominance of N2‐alkylated products. A new methodology for preparation of 1‐alkyl‐5‐nitro‐1,2,3‐triazoles from 1‐tert‐butyl‐4‐nitro‐1,2,3‐triazole via exhaustive alkylation followed by removal of tert‐butyl group from intermediate triazolium salts was demonstrated by the example of preparation of 1‐methyl‐5‐nitro‐1,2,3‐triazole.  相似文献   

15.
The addition of SH and OH groups to single‐wall carbon nanotubes (SWCNTs) was investigated employing first principles calculations. In the case of the semiconducting (10, 0) SWCNT the SWCNT‐SH binding energy is weak, 2–4 kcal/mol. However, for the metallic (5, 5) SWCNT it is larger, 7–9 kcal/mol. Thus metallic SWCNTs seem to be more reactive to SH than the semiconducting ones. Indeed, the (6, 6) SWCNT is more reactive to SH than the (10, 0) SWCNT, by 2–3 kcal/mol, something that can be explained only considering the electronic structure of the tube, because the (6, 6) has a larger diameter. The binding energies are larger for the addition of the OH group, 25 and 30 kcal/mol for the (10, 0) and (5, 5) SWCNTs, respectively. When a single OH or SH group is attached to the metallic SWCNTs, we observe important changes in the DOS at the Fermi level. However, when multiple SH groups are attached, the changes in the electronic and magnetic properties depend on the position of the SH groups. The small binding energy found for the SH addition indicates that the successful functionalization of SWCNTs with SH, SCH3, and S(CH2)nSH groups is mostly due to the presence of defects created after acid treatment and to a minor extent by the metallic tubes present in the samples. Perfect semiconducting SWCNTs showed very low reactivity against the SH group. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

16.
The title compounds were generated by deprotonation of different benzyl‐type carbamates with sec‐butyllithium in the presence of chiral diamines (?)‐sparteine or diisopropyl and di‐tert‐butyl bis(oxazoline)s. These lithiated species exhibit configurational lability at ?78 °C. In the case of the chiral di‐tert‐butyl bis(oxazoline), the equilibrium of the epimeric complexes can be used synthetically to obtain highly enantioenriched secondary benzyl carbamates. The enantiodetermining step was proven to be a dynamic thermodynamic resolution. The absolute configurations of the products were determined, and the stereochemical pathways of selected substitution reactions were thus elucidated. High‐level quantum chemical investigations were performed to gain insight into the experimentally investigated system. To obtain an accuracy for the energy difference (ΔΔH) between two epimeric complexes of about 0.5 kcal mol?1 as well as the correct sign, a theoretical procedure was established. It included geometry optimization at the dispersion‐corrected DFT level, computation of zero‐point vibrational energies, and single‐point SCS‐MP2 energy calculations with large atomic‐orbital basis sets.  相似文献   

17.
Heterobimetallic complexes containing alkali, alkaline‐earth, and divalent europium metals utilizing the perfluoro‐tert‐butoxide (PFTB) ligand following the general formula, [AM(PFTB)3(co‐ligand)x] (A=Na, K; M=Mg, Sr, Ba, Eu; co‐ligand=THF, toluene), have been isolated. These compounds sublime at low temperatures with low residual weight indicating their potential as metal–organic chemical‐vapor deposition (MOCVD) precursors. The complexes have unique molecular architectures that are strongly influenced by M? F interactions, as was verified in the solid state by using X‐ray crystallography. The significance of these interactions were further reinforced by bond‐valence sums analysis and 19F VT‐NMR spectroscopy, in which rotational energies of 18.75 and 19.08 kcal mol?1 were measured.  相似文献   

18.
Carbon, silicon, germanium, tin and lead‐centered radicals were reacted with 3‐nitropentan‐2‐one and 3‐nitropentan‐2‐ol inside the cavity of an electron paramagnetic resonance spectrometer. In all cases, selective addition to the nitrogroup was observed with detection of the corresponding oxynitroxide radicals. In the case of the carbonyl substrate, alkyl acyl nitroxides were also detected because of α‐photocleavage. The oxynitroxides decayed with a first order kinetics via fragmentation of the carbon–nitrogen bond (denitration). Unexpectedly, the activation parameters were fairly similar to those previously reported for the corresponding tert‐butyl oxynitroxides and almost independent from the presence of a carbonyl or a hydroxyl group on the carbon adjacent to the one bearing the nitrogroup. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Functionalizable directing groups (DGs) are highly desirable in C?H activation chemistry. The nitrone DGs are explored in rhodium(III)‐catalyzed C?H activation of arenes and couplings with cyclopropenones. N‐tert‐butyl nitrones bearing a small ortho substituent coupled to afford 1‐naphthols, where the nitrone acts as a traceless DG. In contrast, coupling of N‐tert‐butyl nitrones bearing a bulky ortho group follows a C?H acylation/[3+2] dipolar addition pathway to give bicyclics. The coupling of N‐arylnitrones follows the same acylation/[3+2] addition process but delivers different bicyclics.  相似文献   

20.
The reactions of 3‐butenyl (?CH2CH2CH?CH2) radicals—unimolecular decomposition, isomerization, as well as reaction with O2—and the subsequent unimolecular rearrangement reactions of the 3‐butenylperoxy radicals have been investigated and are compared to the analogous reactions of butyl (?CH2CH2CH2CH3) and butylperoxy radicals using transition‐state theory based on the quantum chemical calculations at the CBS‐QB3 level. For alkyl‐analogue processes, the reactions of 3‐butenyl and 3‐butenylperoxy radicals can be well characterized by the decreased and increased bond dissociation energies at the allylic and vinylic sites, respectively. The intramolecular addition reactions of the radical center atoms to the double bonds were found to be important non‐alkyl‐analogue reactions of 3‐butenyl and 3‐butenylperoxy radicals. As a consequence, the thermal decomposition of 3‐butenyl radicals was found to be slower than that of butyl radicals by one order of magnitude at temperature near 1000 K. Intramolecular addition reactions are suggested to be the predominant unimolecular rearrangement processes of 3‐butenylperoxy radicals over the entire temperature range investigated (500–1200 K). The intramolecular addition reactions of the alkenyl peroxy radicals, which have not been included in combustion kinetic models, and their implications for the autoignition of alkenes are discussed. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 273–288, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号