首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of the anionic polymerization of styrene initiated by cumylcaesium have been reinvestigated in tetrahydrofuran. Quite unlike earlier investigations, the ion pair rate constant kp(±) was found to be 130 l/mole/sec at 25° and the dissociation constant of polystyrylcaesium to be about 5 × 10?10 mole/l. In the presence of caesiumtriphenylcyanoborate used as a common ion salt addition, kp(±) was measured over a wide range of temperature. The results are compared to the temperature behaviour of the ion pair rate constants obtained with polystyrylsodium in polar solvents; they indicate that the existence of solvent separated ion pairs cannot be excluded for polystyrylcaesium.  相似文献   

2.
The polymerization of N-vinylcarbazole (NVC) in the presence of transition metal salts such as WCI6, MoCI5, TaCl5 and NbCl5 under different reaction conditions was studied. In general, aromatic solvents were found to be superior to aliphatic solvents in the polymerization of NVC, i. e., both conversion and molecular weight were higher in aromatic solvents. It was observed that the polymerization reaction proceeds rapidly and almost quantitatively, even at low monomer concentration (< 5 × 10?2M) and at low catalyst to monomer mole ratio (10?5) in aromatic solvents. The copolymerization of NVC with acenaphthylene (ACN) was also investigated in solution at room temperature. The resulting homo- and copolymer were characterized by IR, NMR, x-ray diffraction, and elemental analysis. Thermal and photophysical properties are also reported. From the spectral data, the polymerization solvent was found to have a strong influence upon the polymer stereoregularity.  相似文献   

3.
This investigation reports the synthesis of poly(methyl methacrylate) via activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) and studies the effect of solvents and temperature on its polymerization kinetics. ARGET ATRP of methyl methacrylate (MMA) was carried out in different solvents and at different temperatures using CuBr2 as catalyst in combination with N,N,N′,N″,N″‐pentamethyldiethylenetriamine as a ligand. Methyl 2‐chloro propionate was used as ATRP initiator and ascorbic acid was used as a reducing agent in the ARGET ATRP of MMA. The conversion was measured gravimetrically. The semilogarithmic plot of monomer conversion versus time was found to be linear, indicating that the polymerization follows first‐order kinetics. The linear polymerization kinetic plot also indicates the controlled nature of the polymerization. N,N‐Dimethylformamide (DMF), tetrahydrofuran (THF), toluene, and methyl ethyl ketone were used as solvents to study the effect on the polymerization kinetics. The effect of temperature on the kinetics of the polymerization was also studied at various temperatures. It has been observed that polymerization followed first‐order kinetics in every case. The rate of polymerization was found to be highest (kapp = 6.94 × 10−3 min−1) at a fixed temperature when DMF was used as solvent. Activation energies for ARGET ATRP of MMA were also calculated using the Arrhenius equation.  相似文献   

4.
Conducting polyfluorene derivatives with alkyl chains—poly(9-alkylfluorene)s and poly-(9,9-dialkylfluorene)s—have been synthesized by chemical polymerization utilizing FeCl3 as an oxidizing agent. The polymers obtained are found to be soluble in conventional organic solvents such as chloroform and have been characterized by 1H- and 13C-NMR. The results indicate that the fluorene moeities are mainly linked in the 2,7′-fashion to yield the straight chain polymer. The degree of polymerization is estimated (by gel permeation chromatography) to be of the order of 10. The polymers are found to be fusible and the thermal properties of the polymers have been characterized by differential scanning calorimetry. The glass transition temperature is found to decrease with an increase of the alkyl chain length. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
The radiation-induced cationic polymerization of isobutyl vinyl ether in solutions of diethyl ether and methylene chloride was investigated under conditions where the monomer and solvents were dried with molecular sieves to high levels of dryness. The investigation covered the temperature range from -16 to 90° C, the dose-rate range from 1015 to 1020 eV/ (g)(sec) (using both gamma rays and electrons), and the influence of diethyl ether and methylene chloride as solvents for the monomer.

For the solution of the monomer in diethyl ether, a very high overall activation energy of 29.7 kcal/mole was found, which decreased sharply to a value of 1.2 kcal/mole above 30° C. No such change was found for the monomer solution in methylene chloride.

The dose-rate dependence of the rate of polymerization for the monomer solution in methylene chloride was found to be close to unity over the entire dose-rate range investigated.  相似文献   

6.
Abstract

The thermal polymerization of methyl methacrylate in a solution of N,N-dimethylacetamide has been studied using [hydroxy(tosyloxy)- iodo]benzene (HTIB) as the initiator. The rate of polymerization was a direct function of the monomer and initiator concentrations. The initiator and monomer exponent values expressing this dependence were found to be 1.0 and 0.8, respectively. The overall activation energy of polymerization was estimated to be 45 kJ·mol?-1. The polymerization was inhibited in the presence of hydroquinone. The effect of various solvents on the polymerization rate was studied. The polymer prepared with HTIB (0.47 × 10?3 mol·L?-1) had a number-average molecular weight of 138,000 and a glass transition temperature of 106°C. The polymer showed good thermal stability as determined by thermogravimetric analysis.  相似文献   

7.
Polymerization of methyl methacrylate with some cobalt (III) complexes was carried out in various solvents and in mixed solvents of acetone and water or alcohols. Sodium hexanitrocobaltate(III) was found to be an effective initiator in mixed solvent of water and acetone. The kinetic study on the polymerization of methyl methacrylate with Na3[Co(NO2)6] in a water-acetone mixed solvent gave the following over-all rate equation: Rp = 8.04 × 104 exp{ ?13,500/RT} [I]1/2[M]2 (mol/1.?sec). The effects of various additives on polymerization rate and the copolymerization curve with styrene suggest that polymerization proceeds via a radical mechanism. The dependence of the polymerization rate on the square of monomer concentration and the spectroscopic data were indicative of the formation of a complex between initiator and monomer.  相似文献   

8.
The radical polymerization of three monomers bearing nucleobases 1‐(4‐vinylbenzyl)thymine (VBT), 1‐(4‐vinylbenzyl)uracil (VBU) and 9‐(4‐vinylbenzyl)adenine (VBA) was investigated. The corresponding homopolymers could be prepared in high yields via conventional radical polymerization. However, the resulting polymers were found to be only soluble in a few polar solvents. On the other hand, copolymers of dodecyl methacrylate (DMA) with either VBT or VBA could be prepared via both free radical polymerization and atom transfer radical polymerization and could be dissolved in a large variety of organic solvents. Moreover, the formed complementary copolymers P(VBT‐co‐DMA) and P(VBA‐co‐DMA) were found to self‐assemble in dilute solutions in dioxane or chloroform via base recognition, as evidenced by a significant hypochromicity effect in UV spectroscopy. Nevertheless, at higher concentrations in chloroform, both dynamic light scattering and optical microscopy indicate that P(VBT‐co‐DMA), P(VBA‐co‐DMA), or P(VBT‐co‐DMA)/P(VBA‐co‐DMA) mixtures spontaneously self‐assemble into micron size spherical aggregates. 1H NMR and FTIR studies confirmed that the self‐assembly process is driven in all cases via H‐bond formation. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4805–4818, 2005  相似文献   

9.
Two novel fluorinated monomers were prepared and polymerized with biphenols to produce amorphous, thermally stable poly(aryl ether ketone)s. The properties of the fluorinated polymers are compared to those of unfluorinated, amorphous poly(aryl ether ketone)s. The presence of fluorine in the polymers was found to cause a decrease in glass transition temperature and Young's moduli, however, no increase in thermal stability was observed. The fluorinated polymers are soluble in common organic solvents such as chloroform and methylene chloride at room temperature, and also show solubility in solvents containing a ketonic moiety, such as acetone. Evidence of polymer branching through fluorines considered to be unreactive under the polymerization conditions was found. Efforts were made to evaluate the reactivity of fluorine atoms under the polymerization conditions using both molecular modeling and 19F-NMR to ascertain if such branching could be avoided. © 1995 John Wiley & Sons, Inc.  相似文献   

10.
Sodium thiophenoxide initiated the polymerization of methyl methacrylate in polar aprotic solvents (DMF, DMSO, HMPA). The active species that initiated the polymerization of the monomer was found by spectrophotometric measurements and by the sodium fusion method to be sodium thiophenoxide itself. The activation energy for the polymerization of the monomer in DMF solvent obtained was E = 3.4 kcal/mole below 30°C, and E = ?3.3 kcal/mole above the temperature. The phenomena were reasoned as the result of the formation of two active species: a solvent-separated ion pair and a contact ion pair. The effects of counterions on the reactivity of thiophenoxide increased with increasing electropositivity of the metals: Li < Na < K. Sodium phenoxide, the oxygen analog of thiophenoxide, was also found to initiate the polymerization of the monomer in the solvents. The relative reactivity of thiophenoxide to phenoxide for the monomer in HMPA at 30°C was thus determined: phenyl-SNa > phenyl-ONa. The relative effect of the polar aprotic solvents on the reactivity of thiophenoxide was also as follows: HMPA > DMF > DMSO. The kinetic studies were made by the graphical evaluation of rate constants. The following results were obtained for the monomer at 20°C in DMF solvent: Kp = 3.5 × 102 1./mole-hr and Kt = 9.8 × 10?2/hr.  相似文献   

11.
Mechanical degradation and mechanochemical polymerization in polystyrene–styrene–cyclohexanone mixtures have been studied by ultrasonic irradiation at 60°C. The number of fresh polymer chains after the degradation is 2 × 10?5 mole l?1 hr?1. The rate equations for mechanical scission and mechanochemical polymerization have been deduced. The rate equation for mechanical scission was found to be in agreement with the expression of a previous paper. In addition, the rate equation for mechanochemical polymerization is not essentially different from that for the general radical polymerization in the presence of solvents. The kinetic chain length for polymeric free radicals in the polymerization process has been calculated. The mechanochemical polymerization of styrene was initiated by only one of the two kinds of end radicals after mechanical scission of polystyrene. The molecular weight distributions of the samples after the degradation and the polymerization have been compared and discussed.  相似文献   

12.
It is shown that the products of interaction of ethylene oxide and bicyclic amines containing tertiary nitrogen atoms at the tops of bicyclic structures efficiently initiate the anionic polymerization of acrylonitrile. As opposed to all known initiators of this process, the mentioned initiating systems contain no metal atoms or atoms of elements heavier than oxygen. The polymerization of acrylonitrile under the action of the ethylene oxide–bicyclic amine system in a polar medium (dimethyl sulfoxide) at room temperature occurs in the homogeneous regime over several minutes, while, in a weakly polar solvent (tetrahydrofuran), polymerization occurs in the heterogeneous regime over several hours. The reaction may become homogeneous in a mixture of these solvents at both room temperature and a lower temperature. The number-average molecular masses of the polymers, depending on polymerization conditions, are in the range from 25 × 103 to 480 × 103 and their polydispersity indexes are from 1.55 to ~3.40. It is found that the copolymers of acrylonitrile with oxygen-containing acrylic monomers, as well as with ethylene oxide, can be prepared.  相似文献   

13.
Some polyacetylene derivatives containing an amine functional group were prepared by the polymerization of propargylamine (PA) and 1,1-diethylpropargylamine (DEPA) with various transition metal catalysts. In the polymerization of PA, Mo-based catalysts were more effective than that of W-based catalysts, and organoaluminum compounds, especially EtAlCl2, were found to be very effective cocatalysts. In the polymerization of DEPA, Mo-and W-based catalyst systems showed a similar catalytic activity. The polymerization easily proceeded in polar solvents such as nitrobenzene and DMF as well as nonpolar aromatic solvents such as chlorobenzene, toluene, etc. The resulting poly(PA) and poly(DEPA) were insoluble in organic solvents regardless of polymerization catalysts but the polymers were found to be stable to air oxidation. Thermogravimetric analyses and thermal transitions of poly(PA) and poly(DEPA) were also studied. © 1992 John Wiley & Sons, Inc.  相似文献   

14.
New functional monomer methacryloyl isocyanate containing 4‐chloro‐1‐phenol (CPHMAI) was prepared on reaction of methacryloyl isocyanate (MAI) with 4‐chloro‐1‐phenol (CPH) at low temperature and was characterized with IR, 1H, and 13C‐NMR spectra. Radical polymerization of CPHMAI was studied in terms of the rate of polymerization, solvent effect, copolymerization, and thermal properties. The rate of polymerization of CPHMAI has been found to be smaller than that of styrene under the same conditions. Polar solvents such as dimethylsulfoxide (DMSO) and N,N‐dimethyl formamide (DMF) were found to slow the polymerization. Copolymerization of CPHMAI (M1) with styrene (M2) in tetrahydrofuran (THF) was studied at 60°C. The monomer reactivity ratio was calculated to be r1 = 0.49 and r2 = 0.66 according to the method of Fineman—Ross. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 469–473, 2000  相似文献   

15.
The polymerization of acenaphthylene (ACN) was examined in the presence of the group V and VI transition metal salts such as WCl6, MoCl5, TaCl5, and NbCl5, as catalysts under various reaction conditions. These transition metal salts were found to be effective catalysts for the polymerization of ACN. The polymerization of ACN by WCl6 in chlorobenzene proceeded at a high initial rate when the monomer to catalyst mole ratio was 200. In addition, it was observed that aromatic solvents generally were found to be superior to aliphatic solvents for both conversion and molecular weight. The structure of the resulting polymers was characterized by means of NMR, IR, UV, and x-ray diffraction. Emission properties were also investigated. Fluorescence emission spectra of the polymers obtained by WCl6 as a catalyst varied strongly depending on the polymerization solvent. Thus, it appears that the polyacenaphthylene produced by WCl6 was a different configuration dependent on the polymerization solvents used.  相似文献   

16.
Macrocyclic polyethers, e.g., crown ethers and cryptands, were prepared and employed as phase transfer catalysts for free radical polymerization of acrolein, a vinyl monomer, with persulfates (S2O82–) as initiators. The catalytic abilities of various macrocyclic polyethers as catalysts for the free radical polymerization of acrolein were found to be in the order: benzo‐15‐crown‐5 > dibenzo‐18‐crown‐6 > 12‐crown‐4 > 15‐crown‐5 > 18‐crown‐6 > cryptand‐22 with sodium persulfate (Na2S2O8) as initiator. Sodium persulfate proved to be a better initiator than ammonium persulfate or potassium persulfate with benzo‐15‐crown‐5 as a catalyst. Effects of solvents and temperature on the catalytic polymerization were also investigated. The polymerization rates in various solvents were in the order: dioxane > benzene > acetonitrile > acetone > dichloromethane > hexane > water. Comparison between bulk polymerization and solution polymerization was also made. Higher polymerization rate was observed at higher temperature. The molecular weights of polyacrolein and the conversion of monomer in reaction period were determined with gel permeation chromatography and ultra‐violet spectrophotometry, respectively. Concentration effects of crown ether and initiator were also investigated and discussed.  相似文献   

17.
The kinetics of solution polymerization of methyl methacrylate using trioctylmethylammonium persulfate (aliquat persulfate) at 60°C has been studied in t-butyl alcohol, N,N-dimethyl formamide, acetonitrile, dioxane, acetone, and methyl ethyl ketone. The rate of polymerization depends markedly on the solvent used. The initiator exponent is close to 0.5 in the first three solvents but larger than this value in the other three solvents. The overall activation energy of the polymerization has been determined in all the solvents. The rate constants and activation parameters for the primary decomposition of the initiator have been determined in the first three solvents where ideal polymerization conditions prevail. The activation parameters for the decomposition of AQ2S2O8 in the organic solvents depend on the type of solvent. They are very different from those of the free S2O2?8 ion in water. These differences have been explained taking into consideration the various ionic forms in which the initiator exists in the studied solvents using a previously postulated model of the activated state.  相似文献   

18.
Abstract

A new redox system, dioxane-ascorbic acid, has been investigated for the homopolymerization of vinyl monomers. Detailed kinetic studies on the aqueous polymerization of acrylamide by this initiating system have been done iodometrically at 35 ± 0.2°C. The effect of various additives, such as organic solvents, inorganic salts, surfactants, etc., on the rate of polymerization has been studied. The retardation constants for organic solvents have been evaluated by the “intercept method.” The overall energy of activation has been found to be 8.75 kcal/deg/mol, within the temperature range 25–45°C. A suitable mechanism has been suggested. The following rate expression: Rp α [acrylamide]1.0 [dioxane]1.0 [ascorbic acid]0, has been observed.  相似文献   

19.
The polymerization of diallyl phthalate has been studied in two solvents, benzene (GRadical = 0.7) and chloroform (GR = 11.2), γ-radiation being used to investigate the effect of the solvent on the rates of polymerization and also chain transfer to the solvent. Kinetic analysis shows that in benzene solution the initiating species come almost exclusively from the monomer, but in chloroform they arise only from the solvent. The latter was further confirmed from the chlorine analysis of the polymer wherein chloroform appears to have telomerized with diallyl phthalate. In neither of the solvents was high molecular weight polymer obtained. The kp/kt1/2 for the polymerization of DAP was found to be 3.3 × 10?4 and 1.17 × 10?3 in benzene and chloroform solutions, respectively. The chain-transfer constant CS was 11.25 × 10?3 and 9.75 × 10?3 for benzene and chloroform, respectively.  相似文献   

20.
The study of chain-transfer reactions in thermal and AIBN-initiated polymerization of styrene is aimed at the determination of transfer constants to the solvents at 60°C. For thermal polymerization the transfer constants Cs to acetone, chloroform, and chloroform mixed with acetone are 3.2 × 10?5, 4.1 × 10?5, and 4.4 × 10?5, respectively. In the case of AIBN-initiated polymerization, the transfer constant of chloroform in the mixture acetone–chloroform is Cs = 3.3 × 10?4. All these transfer constants are average values. It has been found that neither acetone nor chloroform satisfies the Mayo equation in the presence of transfer agent very well. These anomalies can be explained by assuming a complexation phenomenon. The changes in the polarity and resonance are taken into account. It is considered that in the chain-transfer reactions under investigation, the association or complex-forming ability of solvent and monomer or polymer play a role. In studying the chain-transfer reaction in the acetone–chloroform solvent mixture another phenomenon affecting the determination of the chain transfer constant is assumed. This phenomenon consists in formation of associates in which both solvents participate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号