首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This paper studies red blood cell (RBC) partitioning and blood flux redistribution in microvascular bifurcation by immersed boundary and lattice Boltzmann method. The effects of the initial position of RBC at low Reynolds number regime on the RBC deformation, RBC partitioning, blood flux redistribution and pressure distribution are discussed in detail. It is shown that the blood flux in the daughter branches and the initial position of RBC are important for RBC partitioning. RBC tends to enter the higher-flux-rate branch if the initial position of RBC is near the center of the mother vessel. The RBC may enter the lower-flux-rate branch if it is located near the wall of mother vessel on the lower-flux-rate branch side. Moreover, the blood flux is redistributed when an RBC presents in the daughter branch. Such redistribution is caused by the pressure distribution and reduces the superiority of RBC entering the same branch. The results obtained in the present work may provide a physical insight into the understanding of RBC partitioning and blood flux redistribution in microvascular bifurcation.  相似文献   

2.
In this article, the transonic inviscid flow over a deformable airfoil with plunging motion is studied numerically. A finite volume method based on the Roe scheme developed in a generalized coordinate is used along with an arbitrary Lagrangian-Eulerian method and a dynamic mesh algorithm to track the instantaneous position of the airfoil.The effects of different governing parameters such as the phase angle, the deformation amplitude, the initial angle of attack, the flapping frequency, and the Mach number on the unsteady flow field and aerodynamic coefficients are investigated in detail. The results show that maneuverability of the airfoil under various flow conditions is improved by the deformation. In addition, as the oscillation frequency of the airfoil increases, its aerodynamic performance is significantly improved.  相似文献   

3.
摘要:为了计算动脉粥样硬化和局部斑块形成的堵塞对血管壁工作状态的影响,本文根据血液流动的连续性方程、运动方程及管壁运动方程,在给定了血压波形函数的基础上,求得了狭窄血管管壁的径向位移及环向应力。分析了不同狭窄程度对血管壁变形及应力的影响;给出了不同狭窄情况下及局部斑块硬化程度不同时,血管植入支架所需的作用力。从而计算出了植入支架后血管壁的径向位移及应力状态。本文的研究结果可供临床上对狭窄血管植入支架后的变形与受力分析,和支架的正确安放参考,可避免发生堵塞严重或血管过渡硬化时,由于安放支架不当而使发生血管破裂的医疗事故。  相似文献   

4.
An immersed boundary method based on an FEM has been successfully combined with an elastic spring network model for simulating the dynamical behavior of a red blood cell (RBC) in Poiseuille flows. This elastic spring network preserves the biconcave shape of the RBC in the sense that after the removal of the body force for driving the Poiseuille flow, the RBC with its typical parachute shape in a tube does restore its biconcave resting shape. As a benchmark test, the relationship between the deformation index and the capillary number of the RBCs flowing through a narrow cylindrical tube has been validated. For the migration properties of a single cell in a slit Poiseuille flow, a slipper shape accompanied by a cell membrane tank‐treading motion is obtained for Re , and the cell mass center is away from the center line of the channel due to its asymmetric slipper shape. For the lower Re ?0.0137, an RBC with almost undeformed biconcave shape has a tumbling motion. A transition from tumbling to tank‐treading happens at the Reynolds number between 0.0137 and 0.03. In slit Poiseuille flow, the RBC can also exhibit a rolling motion like a wheel during the migration when the cell is released in the fluid flow with φ = π/2 and θ = π/2 (see Figure 12 for the definition of φ and θ). The lower the Reynolds number, the longer the rolling motion lasts; but the equilibrium shape and position are independent from the cell initial position in the channel. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
A micropolar model for blood simulating magnetohydrodynamic flow through a horizontally nonsymmetric but vertically symmetric artery with a mild stenosis is presented. To estimate the effect of the stenosis shape, a suitable geometry has been considered such that the horizontal shape of the stenosis can easily be changed just by varying a parameter referred to as the shape parameter. Flow parameters, such as velocity, the resistance to flow (the resistance impedance), the wall shear stress distribution in the stenotic region, and its magnitude at the maximum height of the stenosis (stenosis throat), have been computed for different shape parameters, the Hartmann number and the Hall parameter. This shows that the resistance to flow decreases with the increasing values of the parameter determining the stenosis shape and the Hail parameter, while it increases with the increasing Hartmann number. The wall shear stress and the shearing stress on the wall at the maximum height of the stenosis possess an inverse characteristic to the resistance to flow with respect to any given value of the Hartmann number and the Hall parameter. Finally, the effect of the Hartmann number and the Hall parameter on the horizontal velocity is examined.  相似文献   

6.
采用界面跟踪法FTM(Front-Tracking Method),并结合CSF(continuum surface force)模型,研究了在垂直方向上温度分布不均匀的对称流场中由Marangoni效应引起的气泡上升运动问题。模拟了在不同的M a数和Pr数下单气泡及同轴双气泡的运动。研究结果表明,在不同的M a数下气泡的运动差异较大,M a数越大,气泡运动至稳态时的速度越大,且气泡运动的最大速度值与M a数呈正相关关系;增大Pr数所造成的粘度增大或热扩散率减小将削弱气泡的迁移运动;Marangoni对流中双气泡的局部运动证实了温度梯度和气泡运动速度紧密相关。  相似文献   

7.
To model red blood cell (RBC) deformation and multiple‐cell interactions in flow, the recently developed technique derived from the lattice Boltzmann method and the distributed Lagrange multiplier/fictitious domain method is extended to employ the mesoscopic network model for simulations of RBCs in flow. The flow is simulated by the lattice Boltzmann method with an external force, while the network model is used for modeling RBC deformation. The fluid–RBC interactions are enforced by the Lagrange multiplier. To validate parameters of the RBC network model, stretching tests on both coarse and fine meshes are performed and compared with the corresponding experimental data. Furthermore, RBC deformation in pipe and shear flows is simulated, revealing the capacity of the current method for modeling RBC deformation in various flows. Moreover, hydrodynamic interactions between two RBCs are studied in pipe flow. Numerical results illustrate that the leading cell always has a larger flow velocity and deformation, while the following cells move slower and deform less.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
A novel efficient interface‐tracking method is developed to gain an insight into the interface in a multiphase or multifluid system, called the modified particle binary level set (MPBLS) method, in which the binary level set function is defined to distinguish the different phases or fluids and further modified by Lagrangian particles scattered along the interface for achieving higher accuracy. The validation of the MPBLS method is carried out first by simulating the free motion of a red blood cell (RBC) in the rotating, shear and Poiseuille flows, respectively. Subsequently, further validations are performed by comparing with the experimental and numerical results published previously. As one of important applications, the MPBLS method is employed to investigate the deformation behaviors of RBCs with different shapes in a capillary. The simulations show that the healthy RBC gradually changes the geometric shape from a biconcave to a steady parachute shape. It is thus guaranteed that the RBC successfully traverses through the smaller capillaries compared with undeformed RBC. However, the unhealthy RBC with the circular or elliptical shape has different deformation behaviors, in which the steady parachute shape is much less concave at the rear and more convex in the front. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Red blood cells (RBCs) suspended in a high-viscosity medium were filmed while flowing through a microchannel using an automated rheoscope. Under these conditions, erythrocytes take different orientations and undergo varying deformation according to their location in the velocity profile. Measurements of the mean deformation at several distances from the center of the microchannel at a constant flow rate were acquired for normal and thalassemia erythrocytes. The measurements demonstrate how diagnosis can be made based on a single flow rate in contrast to conventional methods where shear is mechanically controlled. The spatial distribution and velocity of RBCs and rigid microspheres (1 μm) were measured. The maximum slip velocity was found to be linearly correlated to the flow rate for both cells and microspheres. RBCs showed enhanced inward lateral migration compared to the rigid spheres, which is attributed to RBC deformation. The results demonstrate the coupling between RBC mechanical properties and their motion in microvessels. This paper was presented at Annual European Rheology Conference (AERC) held in Hersonisos, Crete, Greece, April 27-29, 2006.  相似文献   

10.
Flow through a circular orifice in a deformable diaphragm mounted in a pipe was studied experimentally as a simple yet suitable case for validating numerical fluid/structure interaction (FSI) codes including structures with significant deformation and strain. The flow was characterized using pressure taps, particle image velocimetry (PIV), and hot-film anemometry while deformation of the compliant diaphragm was determined directly from PIV images. The diaphragm material properties were measured independently by a uniaxial tensile testing machine. The diaphragm material modulus, orifice diameter, and pipe Reynolds number were varied over ranges appropriate for simulations of flows through heart valves. Pipe Reynolds numbers ranged from 600 (laminar upstream condition) to 8800 (turbulent upstream condition). The pressure drop across the diaphragm resulted in a concave deformation for all cases studied. For the range of Reynolds number tested, the Euler number decreased with increasing Reynolds number as a result of orifice expansion. The flow immediately downstream of compliant diaphragms was jet-like with strong inward radial velocity components and vena contracta. Laminar low Reynolds number flow (Re=600) through both rigid and compliant diaphragms yielded early and regular roll up of coherent vortex rings at a fixed frequency in contrast to turbulent higher Reynolds number flow (Re=3900), which yielded a broad range of vortex passage frequencies. Expansion of the compliant orifice for Re=3900 resulted in an initially broader slower jet with delayed shear layer development compared with the equivalent rigid case.  相似文献   

11.
A sensor that can efficiently and sequentially measure the deformability of individual red blood cell (RBC) flowing along a microchannel is described. Counter-electrode-type microsensors are attached to the channel bottom wall, and as RBCs pass between the electrodes, the time series of the electric resistance is measured. An RBC is deformed by the high shear flow to a degree dependent upon its elastic modulus. Hence, the profile of the resistance, which is unique to the shape of the RBC, can be analyzed to obtain the deformability of each cell. First, theoretical and experimental analyses were conducted to identify the specific AC frequency at which the effect of the electric double layer formed on the electrode surface is minimized. Measurements were then conducted upon samples of normal human RBCs and glutaraldehyde-treated (rigidified) RBCs to evaluate the feasibility of the present method. In addition, simultaneous visualization of RBC deformation was performed using a high-speed camera. Normal RBCs were observed to have a degree of deformation index (DI) of around 0.57, whereas the rigidified RBCs was DI = 0 in the microchannel. The experimental measurements showed a strong correlation between the half-width of the maximum of the resistance distribution and the DI of the RBC.  相似文献   

12.
The growth and collapse of gaseous bubbles near a movable or deformable body are investigated numerically using the boundary element method and fluid–solid coupling technique. The fluid is treated as inviscid, incompressible and the flow irrotational. The unsteady Bernoulli equation is applied on the bubble surface as one of the boundary conditions of the Laplace’s equation for the potential. Good agreements between the numerical and experimental results demonstrate the robustness and accuracy of the present method. The translation and rotation of the rigid body due to the bubble evolution are captured by solving the six-degrees-of-freedom equations of motion for the rigid body. The fluid–solid coupling is achieved by matching the normal component of the velocity and the pressure at the fluid–solid interface. Compared to a fixed rigid body, the expansion of the bubble is not affected too much but much faster collapsing velocities during the collapsing phase of bubble can be observed when considering the motion of the rigid body. The rigid body is pushed away as the bubble grows and moved toward the bubble as the bubble collapses. The motion of two bubbles near a movable cylinder is also simulated. The large rotation of the cylinder and obvious deformation and distortion for the bubble in close proximity to a curved wall are observed in our codes. Finally, the growth and collapse of bubble near a deformable ellipsoid shell are also simulated using the combination of boundary element method (BEM) and finite element method (FEM) techniques. The oscillations of the ellipsoid shell can be observed during the growth and collapse of bubble, which much differs from the results obtained by only considering effects of a rigidly movable body on the bubble evolution.  相似文献   

13.
The non-Newtonian blood flow, together with magnetic particles in a stenosed artery, is studied using a magneto-hydrodynamic approach. The wall slip condition is also considered. Approximate solutions are obtained in series forms under the assumption that the Womersley frequency parameter has small values. Using an integral transform method, analytical solutions for any values of the Womersley parameter are obtained.Numerical simulations are performed using MATHCAD to study the influence of stenosis and magnetic field on the flow parameters. When entering the stenosed area, blood velocity increases slightly, but increases considerably and reaches its maximum value in the stenosis throat. It is concluded that the magnitude of axial velocity varies considerably when the applied magnetic field is strong. The magnitude of maximum fluid velocity is high in the case of weak magnetic fields. This is due to the Lorentz's force that opposes motion of an electrically conducting fluid. The effect of externally transverse magnetic field is to decelerate the flow of blood. The shear stress consistently decreases in the presence of a magnetic field with increasing intensity.  相似文献   

14.
The objective of the present work is to predict compressible swirl flow in the nozzle of air‐jet spinning using the realizable k–ε turbulence model and discuss the effect of the nozzle pressure. The periodic change of flow patterns can be observed. The recirculation zone near the wall of the injectors upstream increases in size and moves gradually upstream, whereas the vortex breakdown in the injector downstream shifts slowly towards the nozzle outlet during the whole period. A low axial velocity in the core region moves gradually away from the centerline, and the magnitude of the center reverse flow and the area occupied by it increase with axial distance due to the vortex breakdown. From the tangential velocity profile, there is a very small free‐vortex zone. With increasing nozzle pressure, the velocity increases and the location of vortex breakdown is moved slightly downward. However, the increase in the velocity tends to decline at nozzle pressure up to a high level. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Direct numerical simulations (DNS) are used to study the motion and deformation of leukocytes in pressure driven flows in parallel plate channels. The influence of the adhesion force between the leukocytes and the channel wall on such motion and deformation is also investigated. Leukocytes are represented by two composite fluid models, consisting of a membrane, a cytoplasm and a nucleus. The adhesion force is computed using two adhesion force models. In the first model, the adhesion force is given by a potential, and in the second one it is given by Dembo’s kinetic adhesion model. The numerical code is based on the finite element method and the level set technique is used to track the cell membrane position. In the absence of the adhesion force, the leukocyte moves away from the wall to an equilibrium location that depends on the ratio of the cell to plasma viscosities. In presence of the adhesion force, the leukocyte is attracted to the layer of endothelial cells and, as it gets closer, it flattens under the action of hydrodynamic forces. This deformation, in turn, further increases the adhesion force. The leukocyte, however, can be captured only when it is placed sufficiently close to the wall, which for the kinetic model is of the order of 30 nm. We also find that for the normal parameter values and flow rates the adhesive force given by the kinetic model is too small to capture the leukocyte.  相似文献   

16.
The lattice Boltzmann method (LBM) combined with the immersed boundary method is a common tool to simulate the movement of red blood cel ls (RBCs) through blood vessels. With very few exceptions, such simulations neglect the difference in viscosities between the hemoglobin solution inside the cells and the blood plasma outside, although it is well known that this viscosity contrast can severely affect cell deformation. While it is easy to change the local viscosity in LBM, the challenge is to distinguish whether a given lattice point is inside or outside the RBC at each time step. Here, we present a fast algorithm to solve this issue by tracking the membrane motion and computing the scalar product between the local surface normal and the distance vector between the closest LBM lattice point and the surface. This approach is much faster than, for example, the ray-casting method. With the domain tracking applied, we investigate the shape transition of a RBC in a microchannel for different viscosity contrast and validate our method by comparing with boundary-integral simulations.  相似文献   

17.
The pulsatile flow of a two-phase model for blood flow through axisymmetric and asymmetric stenosed narrow arteries is analyzed, treating blood as a two-phase model with the suspension of all the erythrocytes in the core region as the Herschel-Bulkley material and plasma in the peripheral layer as the Newtonian fluid. The perturbation method is applied to solve the resulting non-linear implicit system of partial differential equations. The expressions for various flow quantities are obtained. It is found that the pressure drop, plug core radius, wall shear stress increase as the yield stress or stenosis height increases. It is noted that the velocity increases, longitudinal impedance decreases as the amplitude increases. For asymmetric stenosis, the wall shear stress increases non-linearly with the increase of the axial distance. The estimates of the increase in longitudinal impedance to flow of the two-phase Herschel-Bulkley material are significantly lower than those of the single-phase Herschel-Bulkley material. The results show the advantages of two-phase flow over single-phase flow in small diameter arteries with stenosis.  相似文献   

18.
夏巍  冯浩成 《力学学报》2016,48(3):609-614
功能梯度材料的宏观物理性能随空间位置连续变化,能充分减少不同组份材料结合部位界面性能的不匹配因素.功能梯度壁板用作高速飞行器的热防护结构,能有效消除气动加热带来的壁板内部热应力集中.本文考虑热过屈曲变形引入的结构几何非线性,分析功能梯度壁板的气动弹性颤振边界.基于幂函数材料分布假设,采用混合定律计算功能梯度材料的等效力学性能.根据一阶剪切变形板理论、冯·卡门应变-位移关系和一阶活塞理论,基于虚功原理建立超声速气流中受热功能梯度壁板的非线性气动弹性有限元方程.采用牛顿-拉弗森迭代法数值求解壁板的热屈曲变形,分析超声速气流对热屈曲变形的影响机理.在壁板热过屈曲的静力平衡位置分析动态稳定性,确定了壁板的颤振边界.研究表明,当陶瓷-金属功能梯度壁板的组份材料沿厚度方向梯度分布时,会破坏结构的对称性导致壁板在面内热应力作用下发生指向金属侧的热屈曲变形.超声速气流中壁板热屈曲变形最大的位置随气流速压增大向下游推移,并伴随屈曲变形量的减小.热过屈曲壁板的几何非线性效应会提高壁板的颤振边界,这种影响在高温、低无量纲速压且壁板发生大挠度热屈曲变形时表现显著.较高无量纲气流速压下由于壁板的热屈曲变形被气动力限定在小挠度范围,几何非线性效应不明显.   相似文献   

19.
A mathematical model for blood flow through an elastic artery with multistenosis under the effect of a magnetic field in a porous medium is presented. The considered arterial segment is simulated by an anisotropically elastic cylindrical tube filled with a viscous incompressible electrically conducting fluid representing blood. An artery with mild local narrowing in its lumen forming a stenosis is analyzed. The effects of arterial wall parameters represent viscoelastic stresses along the longitudinal and circumferential directions T t and T θ , respectively. The degree of anisotropy of the vessel wall γ, total mass of the vessel, and surrounding tissues M and contributions of the viscous and elastic constraints to the total tethering C and K respectively on resistance impedance, wall shear stress distribution, and radial and axial velocities are illustrated. Also, the effects of the stenosis shape m, the constant of permeability X, the Hartmann number H α and the maximum height of the stenosis size δ on the fluid flow characteristics are investigated. The results show that the flow is appreciably influenced by surrounding connective tissues of the arterial wall motion, and the degree of anisotropy of the vessel wall plays an important role in determining the material of the artery. Further, the wall shear stress distribution increases with increasing T t and γ while decreases with increasing T θ , M, C, and K. Transmission of the wall shear stress distribution and resistance impedance at the wall surface through a tethered tube are substantially lower than those through a free tube, while the shearing stress distribution at the stenosis throat has inverse characteristic through totally tethered and free tubes. The trapping bolus increases in size toward the line center of the tube as the permeability constant X increases and decreases with the Hartmann number Ha increased. Finally, the trapping bolus appears, gradually in the case of non-symmetric stenosis, and disappears in the case of symmetric stenosis. The size of trapped bolus for the stream lines in a free isotropic tube (i.e., a tube initially unstressed) is smaller than those in a tethered tube.  相似文献   

20.
To examine the effects of wing morphing on unsteady aerodynamics, deformable flapping plates are numerically studied in a low-Reynolds-number flow. Simulations are carried out using an in-house immersed-boundary-method-based direct numerical simulation (DNS) solver. In current work, chord-wise camber is modeled by a hinge connecting two rigid components. The leading portion is driven by a biological hovering motion along a horizontal stroke plane. The hinged trailing-edge flap (TEF) is controlled by a prescribed harmonic deflection motion. The effects of TEF deflection amplitude, deflection phase difference, hinge location, and Reynolds number on the aerodynamic performance and flow structures are investigated. The results show that the unsteady aerodynamic performance of deformable flapping plates is dominated by the TEF deflection phase difference, which directly affects the strength of the leading-edge vortex (LEV) and thus influences the entire vortex shedding process. The overall lift enhancement can reach up to 26% by tailoring the deflection amplitude and deflection phase difference. It is also found that the role of the dynamic TEF played in the flapping flight is consistent over a range of hinge locations and Reynolds numbers. Results from a low aspect-ratio (AR=2) deformable plate show the same trend as those of 2-D cases despite the effect of the three-dimensionality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号