首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Cyanide compounds of the alkali metals and alkaline earths are commonly found to possess “branched” or π‐complex structures in which the metal atom is almost equidistant from both atoms of the CN moiety. Here we present an investigation of the potential energy surfaces for various compounds of the form XMg(CN), using the Gaussian‐2 (G2) procedure. Our results suggest that magnesium, at least, is not so prone to π‐complex formation with the cyanide ligand as has previously been implied, since the presence of the π complex upon the potential energy surface is strongly dependent upon the level of theory employed in geometry optimizations. We find also that, according to G2 theory, the preference of magnesium for isocyanide (rather than cyanide) formation is small but consistent, with XMgNC isomers having calculated heats of formation between 2 and 5 kJ mol−1 below their XMgCN counterparts. The barriers to interconversion of cyanide and isocyanide isomers are also calculated to be comparatively small, typically ∼25 kJ mol−1. In contrast, calculations for protonated species FMg(CN)H+ and Mg(CN)2H+ have determined that the π complexes in these species are indeed stable against CN‐ligand reorientation. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 76: 626–642, 2000  相似文献   

2.
A new mixed oxaaza‐macrocyclic ligand, L1, has been obtained by direct synthesis between 1,4‐bis‐(2′‐formylphenyl)‐1,4‐dioxabutane and the diamine 2,2′‐ethylenedioxydiethylamine. The dialkylated ligand L2, bearing two nitrobenzyl pendant groups, has been prepared and transitional, post‐transitional and Ca2+, Sr2+, and Ba2+ metal complexes have been synthesized in order to elucidate the coordination preferences. The crystal structures of the ligands L1 and L2 and the complexes [SrL2(H2O)2](ClO4)2 and [BaL2(NCS)2(CH3CN)]·CH3CN have been determined by single crystal X‐ray diffraction. The structures reveal the presence of mononuclear endomacrocyclic complexes where the pendant arms radiate away from the ligand.  相似文献   

3.
Polynitrile anions are important in both coordination chemistry and molecular materials chemistry, and are interesting for their extensive electronic delocalization. The title compound crystallizes with two symmetry‐independent half 4,4′‐bipyridine‐1,1′‐diium (bpyH22+) cations and two symmetry‐independent 1,1,3,3‐tetracyano‐2‐ethoxypropenide (tcnoet) anions in the asymmetric unit. One of the bpyH22+ ions is located on a crystallographic twofold rotation axis (canted pyridine rings) and the other is located on a crystallographic inversion center (coplanar pyridine rings). The ethyl group of one of the tcnoet anions is disordered over two sites with equal populations. The extended structure exhibits two separate N—H...NC hydrogen‐bonding motifs, which result in a sheet structure parallel to (010), and weak C—H...NC hydrogen bonds form joined rings. Two types of multicenter CN...π interactions are observed between the bpyH22+ rings and tcnoet anions. An additonal CN...π interaction between adjacent tcnoet anions is observed. Using density functional theory, the calculated attractive energy between cation and anion pairs in the tcnoet...π(bipyridinediium) interactions were found to be 557 and 612 kJ mol−1 for coplanar and canted bpyH22+ cations, respectively.  相似文献   

4.
Cyanogen diluted in argon was reacted with laser ablated Zn atoms to produce the NCZnCN and NCZnZnCN cyanides and higher energy isocyanides ZnNC, CNZnNC, and CNZnZnNC, which were isolated in excess argon at 4 K. These reaction products, identified from the matrix infrared spectra of their ‐CN and ‐NC chromophore ligand stretching modes, were confirmed by 13C and 15N isotopic substitution and comparison with frequencies calculated by the B3LYP and CCSD(T) methods using the all electron aug‐cc‐pVTZ basis sets. The cyanide and isocyanide products were increased markedly by mercury arc UV photolysis, which covers the zinc atomic absorption. The above electronic structure calculations that produce appropriate ligand frequencies for these dizinc products also provide their Zn?Zn bond lengths: CCSD(T) calculations find a short 2.367 Å Zn?Zn bond in the NCZnZnCN cyanide, a shorter 2.347 Å Zn?Zn bond in the 37.4 kJ mol?1 higher energy isocyanide CNZnZnNC, and a longer 4.024 Å bond in the dizinc van der Waals dimer. Thus, the diatomic cyanide (‐CN) and isocyanide (‐NC) ligands are as capable of stabilizing the Zn?Zn bond as many much larger ligands based on their measured and our calculated Zn?Zn bond lengths. This is the first example of dizinc complexes stabilized by different ligand isomers. Additional weaker bands in this region can be assigned to the analogous trizinc molecules NCZnZnZnCN and CNZnZnZnNC.  相似文献   

5.
Acetonitrile and [FXeOXe‐ ‐ ‐FXeF][AsF6] react at ?60 °C in anhydrous HF (aHF) to form the CH3CN adduct of the previously unknown [XeOXe]2+ cation. The low‐temperature X‐ray structure of [CH3CN‐ ‐ ‐XeOXe‐ ‐ ‐NCCH3][AsF6]2 exhibits a well‐isolated adduct‐cation that has among the shortest Xe?N distances obtained for an sp‐hybridized nitrogen base adducted to xenon. The Raman spectrum was fully assigned by comparison with the calculated vibrational frequencies and with the aid of 18O‐enrichment studies. Natural bond orbital (NBO), atoms in molecules (AIM), electron localization function (ELF), and molecular electrostatic potential surface (MEPS) analyses show that the Xe?O bonds are semi‐ionic whereas the Xe?N bonds may be described as strong electrostatic (σ‐hole) interactions.  相似文献   

6.
Phosphine‐stabilized germaborenes featuring an unprecedented Ge=B double bond with short B???Ge contacts of 1.886(2) ( 4 ) and 1.895(3) Å ( 5 ) were synthesized starting from an intramolecular germylene–phosphine Lewis pair ( 1 ). After oxidative addition of boron trihalides BX3 (X=Cl, Br), the addition products were reduced with magnesium and catalytic amounts of anthracene to give the borylene derivatives in yields of 78 % ( 4 ) and 57 % ( 5 ). These halide‐substituted germaborenes were characterized by single‐crystal structure analysis, and the electronic structures were studied by quantum‐chemical calculations. According to an NBO NRT analysis, the dominating Lewis structure contains a Ge=B double bond. The germaborenes undergo a reversible, photochemically initiated [2+2] cycloaddition with the phenyl moiety of a terphenyl substituent at room temperature, forming a complex heterocyclic structure with GeIV in a strongly distorted coordination environment.  相似文献   

7.
The intermolecular interactions existing at three different sites between phenylacetylene and LiX (X = OH, NH2, F, Cl, Br, CN, NC) have been investigated by means of second‐order Møller?Plesset perturbation theory (MP2) calculations and quantum theory of “atoms in molecules” (QTAIM) studies. At each site, the lithium‐bonding interactions with electron‐withdrawing groups (? F, ? Cl, ? Br, ? CN, ? NC) were found to be stronger than those with electron‐donating groups (? OH and ? NH2). Molecular graphs of C6H5C?CH···LiF and πC6H5C?CH···LiF show the same connectional positions, and the electron densities at the lithium bond critical points (BCPs) of the πC6H5C?CH···LiF complexes are distinctly higher than those of the σC6H5C?CH···LiF complexes, indicating that the intermolecular interactions in the C6H5C?CH···LiX complexes can be mainly attributed to the π‐type interaction. QTAIM studies have shown that these lithium‐bond interactions display the characteristics of “closed‐shell” noncovalent interactions, and the molecular formation density difference indicates that electron transfer plays an important role in the formation of the lithium bond. For each site, linear relationships have been found between the topological properties at the BCP (the electron density ρb, its Laplacian ?2ρb, and the eigenvalue λ3 of the Hessian matrix) and the lithium bond length d(Li‐bond). The shorter the lithium bond length d(Li‐bond), the larger ρb, and the stronger the π···Li bond. The shorter d(Li‐bond), the larger ?2ρb, and the greater the electrostatic character of the π···Li bond. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
Understanding the effects of intermolecular interactions on metal‐to‐metal charge transfer (MMCT) is crucial to develop molecular devices by grafting MMCT‐based molecular arrays. Herein, we report a series of solvent‐free {Fe2Co2} compounds sharing the same cationic tetranuclear {[Fe(PzTp)(CN)3]2[Co(dpq)2]2}2+ (PzTp?=tetrakis(pyrazolyl)borate, dpq=dipyrido[3,2‐d:2′,3′‐f]quinoxaline) square units but having anions with different size, including BF4?, PF6?, OTf?, and [Fe(PzTp)(CN)3]?. Intermolecular π???π interactions between dpq ligands, which coordinate to cobalt ions in the {[Fe(PzTp)(CN)3]2[Co(dpq)2]2}2+ units, can be modulated by introducing different counterions, regulating the distortion of the CoN6 octahedron and ligand field around the cobalt ions. This change results in different MMCT behavior. Computational analyzes reveal the substantial role of the intermolecular interactions tuned by the presence of different counteranions on the MMCT behavior.  相似文献   

9.
The reaction of bis(3‐cyano‐2,4‐pentanedionato)copper(II), [Cu(NC‐acac)2] with the nitrogenous base N,N‐dimethyl, N′‐ethyl‐1,2‐ethylenediamine (dmeen) in the presence of Cu(ClO4)2 · 6H2O, afforded a new cationic mixed‐ligand chelate [Cu(CN‐acac)(dmeen)]+. Its structure was characterized spectroscopically (IR, UV/Vis, EPR) and verified by X‐ray diffraction studies as [Cu(CN‐acac)(dmeen)(H2O)]ClO4. The coordination of CN‐acac as bridging ligand leads to a polymeric helical chain, which extends in the crystallographic c axis. Density functional theory (DFT) calculations suggest that in the solid state the anion CN‐acac binding is envisaged through the nitrogen atom of the cyanido group, establishing an octahedral arrangement around copper, whereas in solution, the square‐planar arrangement is prevailed, in accordance with the EPR findings.  相似文献   

10.
The reaction of CuI with 2,3‐diphenylquinoxaline ( L ) in 1:1 mole proportion in CH3CN/THF afforded the dinuclear complex [CuI( L )]2, 1 , whereas the reactions of MX2 (M = Cu; Hg) with L in 1:2 mole proportion in CH3OH gave the mononuclear complexes CuX2( L )2 (X = Cl, 2 ; Br, 3 ) and HgX2( L )2 (X = Cl, 4 ; Br, 5 ). Formulations of all the complexes were determined on the basis of X‐ray crystallography, elemental, IR‐ and emission spectroscopy. X‐ray examination revealed that complex 1 forms the μ,μ‐iodobridged dimer with distorted trigonal planar geometry through coordination of L ligand by one nitrogen atom to the Cu(I) center. The metal centers of complexes 2 and 3 form distorted square planar geometry while those of complexes 4 and 5 form linear geometry. The molecules of these complexes are interlinked through C‐H—π and/or π‐π stacking and anion—π interactions that form the packed structure. All the complexes exhibit emissions which may be tentatively assigned as intraligand (IL) π r? π* transitions.  相似文献   

11.
Two new transition metal(II) complexes [M(hdpa)2(N(CN)2)2] (M = Mn ( 1 ), Co ( 2 ); hdpa = 2, 2'‐dipyridylamine) have been prepared and characterized structurally and magnetically. Both compounds crystallize in the monoclinic space group C2/c. 1 and 2 are isotypic with the unit cell parameters a = 8.634(9), b = 13.541(14), c = 21.99(2) Å, β = 94.806(18)°, and V = 2562(5) Å3 for 1 , a = 8.617(3) Å, b = 13.629(5)Å, c = 21.598(8)Å, β = 94.593(6)°, and V = 2528.4(15)Å3 for 2 , and Z = 4 for both. According to X‐ray crystallographic studies, each metal(II) ion was six‐coordinated with four nitrogen atoms from two bidentate hdpa ligand and two nitrogen atoms from two N(CN) anions to form slightly distorted octahedrons. Adjacent complex molecules are connected by hydrogen bonds or π···π interactions to form three‐dimensional network. The IR and UV spectroscopy were measured and the magnetic behaviors were investigated.  相似文献   

12.
Two new mixed‐anion zinc(II) and cadmium(II) complexes of 3‐(2‐pyridyl)‐5,6‐diphenyl‐1,2,4‐triazine (PDPT) ligand, [Zn(PDPT)2Cl(ClO4)] and [Cd(PDPT)2(NO3)(ClO4)], have been synthesized and characterized by elemental analysis, IR‐ and 1H NMR spectroscopy. The single crystal X‐ray analyses show that the coordination number in these complexes is six with four N‐donor atoms from two “PDPT” ligand and two of the anionic ligands, ZnN4ClOperchlorate, CdN4OnitrateOperchlorate. Self‐assembly of these compounds in the solid state via ππ‐stacking interactions is discussed.  相似文献   

13.
Soluble methane monooxygenase (sMMO) is an enzyme that converts alkanes to alcohols using a di(μ‐oxo)diiron(IV) intermediate Q at the active site. Very large kinetic isotope effects (KIEs) indicative of significant tunneling are observed for the hydrogen transfer (H‐transfer) of CH4 and CH3CN; however, a relatively small KIE is observed for CH3NO2. The detailed mechanism of the enzymatic H‐transfer responsible for the diverse range of KIEs is not yet fully understood. In this study, variational transition‐state theory including the multidimensional tunneling approximation is used to calculate rate constants to predict KIEs based on the quantum‐mechanically generated intrinsic reaction coordinates of the H‐transfer by the di(μ‐oxo)diiron(IV) complex. The results of our study reveal that the role of the di(μ‐oxo)diiron(IV) core and the H‐transfer mechanism are dependent on the substrate. For CH4, substrate binding induces an electron transfer from the oxygen to one FeIV center, which in turn makes the μ‐O ligand more electrophilic and assists the H‐transfer by abstracting an electron from the C?H σ orbital. For CH3CN, the reduction of FeIV to FeIII occurs gradually with substrate binding and H‐transfer. The charge density and electrophilicity of the μ‐O ligand hardly change upon substrate binding; however, for CH3NO2, there seems to be no electron movement from μ‐O to FeIV during the H‐transfer. Thus, the μ‐O ligand appears to abstract a proton without an electron from the C?H σ orbital. The calculated KIEs for CH4, CH3CN, and CH3NO2 are 24.4, 49.0, and 8.27, respectively, at 293 K, in remarkably good agreement with the experimental values. This study reveals that diverse KIE values originate mainly from tunneling to the same di(μ‐oxo)diiron(IV) core for all substrates, and demonstrate that the reaction dynamics are essential for reproducing experimental results and understanding the role of the diiron core for methane oxidation in sMMO.  相似文献   

14.
Four aluminum alkyl compounds, [CH{(CH3)CN‐2,4,6‐MeC6H2}2AlMe2] ( 1 ), [CH{(CH3)CN‐2,4,6‐MeC6H2}2AlEt2] ( 2 ), [CH{(CH3)CN‐2‐iPrC6H4}2AlMe2] ( 3 ), and [CH{(CH3)CN‐2‐iPrC6H4}2AlEt2] ( 4 ), bearing β‐diketiminate ligands [CH{(Me)CN‐2,4,6‐MeC6H2}]2 (L1H) and [CH{(Me)CN‐2‐iPrC6H4}]2 (L2H) were obtained from the reactions of trimethylaluminum, triethylaluminum with the corresponding β‐diketiminate, respectively. All compounds were characterized by 1H NMR and 13C NMR spectroscopy, single‐crystal X‐ray structural analysis, and elemental analysis. Compounds 1 – 4 were found to catalyze the ring‐opening polymerization (ROP) of ε‐caprolactone (ε‐CL) with good activity.  相似文献   

15.
α‐ and β‐mercaptocarboxamides constitute the Zn2+‐ligating entity of several highly potent metalloenzyme inhibitors. We have studied their interaction energies with Zn2+ using the polarizable molecular mechanics procedure SIBFA, and compared them to the corresponding ab initio supermolecule ones. Such validations are necessary to subsequently undertake simulations on complexes of Zn2+–metalloenzymes with inhibitors. If the distributed multipoles and polarizabilities are those derived for each ligand in its appropriate Zn2+‐binding conformation, a close reproduction of the ab initio binding energies is afforded. However, this representation is not tractable upon increasing the size of the ligands and/or to explore a continuum of binding conformations. This makes it necessary to construct the ligands by resorting to a library of constitutive fragments, namely in this case methanethiolate, formamide, and methane covalently connected together. A close reproduction of the ab initio interaction energies is enabled, but only if the ligand–ligand interactions are computed simultaneously with those occurring with Zn2+. This representation accounts for the nonadditivity occurring in the Zn2+–methanethiolate–formamide complex, and justifies the use of the distributed multipoles on the fragments for the construction of larger and flexible molecules. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1038–1047, 2001  相似文献   

16.
The salts [Cu(phen)3][Cu(pheida)2]·10H2O ( 1 ) and [(phen)2Cu(μ‐BAAP)Cu(μ‐BAAP)Cu(phen)2][Cu(BAAP)2]·8.5H2O ( 2 ) (H2pheida = N‐phenetyl‐iminodiacetic acid, H2BAAP = N‐benzylaminoacetic‐2‐propionic acid, phen = 1, 10‐phenanthroline) have been prepared and studied by thermal, spectroscopic and X‐ray diffraction methods. 1 has the rather unusual [Cu(phen)3]2+ cation and two non‐equivalent [Cu(pheida)2]2— anions with a coordination type 4+2 but quite different tetragonality (T = 0.848 and 0.703 for anions 1 and 2, respectively). The crystal consists of multi‐π, π‐stacked chains (…anion 2 — cation — cation — anion 2…) connected by hydrophobic interactions; these chains build channels which are partially filled by anions 1 and water molecules. In contrast, compound 2 has a mixed‐ligand trinuclear cation with a bridging central moiety close similar to the counter anion. The formation of such a trinuclear cation is discussed as a consequence of the most advantageous molecular recognition process between [Cu(phen)2(H2O)1 or 2]2+ and [Cu(BAAP)2]2— in solution. In the crystal of 2, multi‐π, π‐stacked arrays of C6‐rings from phen and (BAAP)2— ligands of trinuclear cations generate channels where counter anions and water molecules are located.  相似文献   

17.
Calculations have been performed at the MP2 and DFT levels for investigating the reasons for the difficulties in synthesizing bis(isocyanide)gold(I) halide complexes. Three‐coordinated gold(I) complexes of the type (R3P)2AuIX ( 1 ) can be synthesized, whereas the analogous isocyanide complexes (RNC)2AuIX ( 2 ) are not experimentally known. The molecular structures of (R3P)2AuIX (X = Cl, Br, and I) and (RNC)2AuIX with X = halide, cyanide, nitrite, methylthiolate, and thiocyanate are compared and structural differences are discussed. Calculations of molecular properties elucidate which factors determine the strength of the gold‐ligand interactions in (RNC)2AuIX. The linear bonding mode of RNC favors a T‐shaped geometry instead of the planar Y‐shaped trigonal structure of (R3P)2AuIX complexes that have been synthesized. An increased polarity of the Au–X bond in 2 leads to destabilization of the Y‐shaped structure. Chalcogen‐containing ligands or cyanide appear to be good X‐ligand candidates for synthesis of (RNC)2AuIX complexes.  相似文献   

18.
A series of modified montmorillonites including Zn2+ loaded montmorillonite (Zn/MMT), Ce3+ loaded montmorillonite (Ce/MMT) and Zn2+‐Ce3+ loaded montmorillonites (Zn‐Ce/MMT) were prepared by an ion‐exchange reaction, and characterized using X‐ray photoelectron spectroscopy (XPS), X‐ray diffraction (XRD), and scanning electron microscopy (SEM). The specific surface areas, zeta potentials and antibacterial activity of the modified montmorillonites were also investigated. Zinc and cerium were proved to be present as bivalent zinc state and trivalent cerium state in the modified montmorillonites. For the modified montmorillonites, the d001 basal spacings increased and the particles were formed of irregular shapes. The antibacterial activity of the modified montmorillonites was enhanced with the increase of specific surface areas and zeta potentials, and Zn2+‐Ce3+ loaded montmorillonites displayed obvious synergistic antibacterial effect. When Zn/Ce atomic ratio was 1.24, the Zn‐Ce/MMT showed high antibacterial efficiency and broad‐spectrum antibacterial activity, possessing the MIC against Escherichia coli, Staphylococcus aureus, Candida albicans and Mucor of 1500, 1000, 2000 and 3000 mg·L?1, respectively.  相似文献   

19.
Treatment of CpRuH(PP) (PP=dppm, dppe) with TlPF6 produced [CpRu(H)(Tl)(PP)]PF6. X‐ray diffraction and computational studies suggest that the complexes contain a Ru?H?Tl 3c–2e bond and can be viewed as the first σ‐complexes of period 6 main‐group hydrides [CpRu{η2‐(H?Tl)}(PP)]PF6 or [Tl{η2‐H?RuCp(PP)}]PF6. The complexes can be stored as a solid at room temperature for days without appreciable decomposition, but are unstable in solution and evolved to the trimetallic complexes [{CpRu(PP)}2(μ‐Tl)]PF6.  相似文献   

20.
The synthesis and structure of heteroleptic tetrylenes containing bifunctional β‐diketiminate ligand are reported. Compounds were prepared via a protolytic reaction of free β‐diketimine {N‐[(2‐MeO)C6H5]}N═C(Me)CH═C(Me)N(H){N′‐[(2‐MeO)C6H5]} (LCOH) and {N‐[(2‐MeO)C6H5]}N?CHCH?CHN(H){N′‐[(2‐MeO)C6H5]} (LHOH), respectively, with corresponding bis(amide) – M[N(SiMe3)2]2 (M = Ge, Sn, Pb) – in equimolar ratio or via the salt elimination route from lithium precursors generated from LHOH/LCOH species and slight excess of SnCl2 or GeCl2.dioxane complex. Only heteroleptic complexes were obtained by the mentioned methods. Products were characterized by multinuclear NMR spectroscopy techniques and structures of four of them have been determined by X‐ray diffraction methods. Complexes LHOGeCl and LCOSnN(SiMe3)2 crystallize as monomers with the three‐coordinated metal centres by one chloro or amido ligand and one bidentate β‐diketiminato unit, in contrast to the structure of LCOSnCl, which reveals a dimeric character and compound LCOPbN(SiMe3)2, where the central atom of lead is five‐coordinated by methoxy groups of the ligand. Complex LCOSnN(SiMe3)2 was tested as a catalyst for polymerization of various epoxides. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号