首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A numerical study is made on the electrophoresis of a core-shell soft particle based on the first principle of electrophoresis. The soft particle consists of a charged rigid core coated with a polymer shell. Numerical computations for the electrophoretic velocity are obtained and compared with the existing analytical solution. The analytical solutions, based on the Boltzmann distribution of ions and the Debye–Huckel approximation, are valid for lower range of charge density, weak applied electric field and thin double layer. Discrepancy from the existing analytical solution is found when the Debye layer extends beyond the porous shell. This discrepancy becomes larger for higher values of the rigid core surface potential, fixed charge density of the soft shell and stronger imposed electric field. The double-layer polarization is found to have a strong impact when the shell thickness is lower than the Debye length. The electrophoretic velocity is found to vary nonlinearly with the imposed electric field when the imposed field strength is large enough to create a potential drop across the particle bigger than the thermal potential. We have also analyzed the mechanism of sustained solute release from the soft particle. Our results show that the rate of solute release is large compared to a pure diffusion dominated process.  相似文献   

2.
A field-modulated electroosmotic flow (FMEOF) in a microchannel can be obtained by applying modulating electric fields in a direction perpendicular to the channel wall. Micro-vortexes are generated around the electrodes along with an EOF due to the surface charge on the modulated wall. When polarizable particles are suspended near the electrodes, they experience dielectrophoretic forces due to a non-uniform electric field. In this paper, micro-vortexes and dielectrophoretic forces are combined to achieve separation and trap different sized particles in a continuous flow. Numerical results indicate that by adjusting the driving electric field parallel to the channel wall and the modulating electric field, the ratio of dielectrophoretic and hydrodynamic forces can be altered. One type of particles can be trapped by micro-vortexes (negative dielectrophoresis (DEP)), and the other particles are transported to the downstream so that the particles are separated. The influence of the electrode length and the channel height on the trapping rate is investigated.  相似文献   

3.
A numerical investigation is performed into the flow characteristics and mixing performance of electrokinetically driven non-Newtonian fluid in a contraction–expansion microchannel. In the study, the rheological behavior of the fluid is characterized using a power-law model. The results show that the volumetric flow rate reduces as the flow behavior index increases, and thus an improved mixing performance is obtained. Furthermore, it is shown that for all considered values of the flow behavior index, the mixing performance can be enhanced by increasing the ratio of the main channel width to the contraction channel width, extending the length of the contraction channel, assigning a smaller value to the nondimensional Debye–Hückel parameter, and applying an appropriate electric field strength. Finally, it is shown that although the mixing efficiency reduces with a reducing flow behavior index, an acceptable mixing performance can still be obtained given an appropriate specification of the flow conditions and geometry parameters.  相似文献   

4.
Cheng Qi  Chiu-On Ng 《Meccanica》2018,53(8):2105-2120
An analytical model based on lubrication approximation is developed for rotating electroosmotic flow in a narrow slit channel, of which the wall shape and surface potential may vary slowly in the direction of applied fields. The primary and secondary flow fields and the induced pressure gradient, which vary periodically with axial position owing to the gradually varied channel height and surface potentials, are deduced as functions of the inverse Ekman number and the Debye parameter. By studying some limiting cases of special interest, the combined effects of system rotation and the interaction between the geometrical and potential variations are investigated. It is shown that non-uniformity in the channel height and wall potential can qualitatively modify the relationship between system rotation and the primary and secondary flow rates.  相似文献   

5.
Heat and mass transfer in natural convection vertical channels was investigated by means of two-dimensional CFD simulations aided by optimization algorithms. The channel was immersed in air, enclosed between an adiabatic smooth wall and an isothermally heated ribbed wall. The ribs were perpendicular to the fluid flow and their height, width, pitch, thermal conductivity and lateral wall inclination were variable. Also the smooth heated wall channel was studied and compared with the ribbed one. The existence of an optimal channel width for a given channel height and rib geometry was shown. A sensitivity analysis was carried out for the ribbed and the smooth channels. Optimization was applied to the ribbed channel problem in order to maximize the heat and the mass transfer through a multi-objective genetic algorithm. It was found that the presence of the ribs penalizes the channel performance so that no ribbed channel over-performed the smooth one.  相似文献   

6.
The self-sustained oscillations arising in a series of grooved channels are investigated experimentally. Pressure drop, time-averaged and time-various local pressure in the grooved channels with six kinds of groove length are measured with the differential transducer and the pressure sensor, respectively, and the flow structures are visualized using the aluminum dust method. The local pressure signal shows that the self-sustained wave appears in the first or second frequency, and the Strouhal number, based on the nature frequency of the self-sustained wave, is almost equivalent for the first or second frequency in the same channel. Meanwhile, the Strouhal number for each channel decreases monotonously with the groove length. Furthermore, it is found that increasing pressure will result in higher amplitude of the self-sustained wave, this behavior is significant for the efficient heat transfer in practical engineering.  相似文献   

7.
An experimental study was conducted of incompressible, moderate Reynolds number flow of air over heated rectangular blocks in a two-dimensional, horizontal channel. Holographic interferometry combined with high-speed cinematography was used to visualize the unsteady temperature fields in self- sustained oscillatory flow. Experiments were conducted in the laminar, transitional and turbulent flow regimes for Reynolds numbers in the range from Re = 520 to Re = 6600. Interferometric measurements were obtained in the thermally and fluiddynamically periodically fully developed flow region on the ninth heated block. Flow oscillations were first observed between Re = 1054 and Re = 1318. The period of oscillations, wavelength and propagation speed of the Tollmien–Schlichting waves in the main channel were measured at two characteristic flow velocities, Re = 1580 and Re = 2370. For these Reynolds numbers it was observed that two to three waves span one geometric periodicity length. At Re = 1580 the dominant oscillation frequency was found to be around 26 Hz and at Re = 2370 the frequency distribution formed a band around 125 Hz. Results regarding heat transfer and pressure drop are presented as a function of the Reynolds number, in terms of the block-average Nusselt number and the local Nusselt number as well as the friction factor. Measurements of the local Nusselt number together with visual observations indicate that the lateral mixing caused by flow instabilities is most pronounced along the upstream vertical wall of the heated block in the groove region, and it is accompanied by high heat transfer coefficients. At Reynolds numbers beyond the onset of oscillations the heat transfer in the grooved channel exceeds the performance of the reference geometry, the asymmetrically heated parallel plate channel. Received on 26 April 2000  相似文献   

8.
 Results of a comparative evaluation of three heat transfer enhancement strategies for forced convection cooling of a parallel plate channel populated with heated blocks, representing electronic components mounted on printed circuit boards, are reported. Heat transfer in the reference geometry, the asymmetrically heated parallel plate channel, is compared with that for the basic grooved channel, and the same geometry enhanced by cylinders and vanes placed above the downstream edge of each heated block. In addition to conventional heat transfer and pressure drop measurements, holographic interferometry combined with high-speed cinematography was used to visualize the unsteady temperature fields in the self-sustained oscillatory flow. The locations of increased heat transfer within one channel periodicity depend on the enhancement technique applied, and were identified by analyzing the unsteady temperature distributions visualized by holographic interferometry. This approach allowed gaining insight into the mechanisms responsible for heat transfer enhancement. Experiments were conducted at moderate flow velocities in the laminar, transitional and turbulent flow regimes. Reynolds numbers were varied in the range Re = 200–6500, corresponding to flow velocities from 0.076 to 2.36 m/s. Flow oscillations were first observed between Re = 1050 and 1320 for the basic grooved channel, and around Re = 350 and 450 for the grooved channels equipped with cylinders and vanes, respectively. At Reynolds numbers above the onset of oscillations and in the transitional flow regime, heat transfer rates in the investigated grooved channels exceeded the performance of the reference geometry, the asymmetrically heated parallel plate channel. Heat transfer in the grooved channels enhanced with cylinders and vanes showed an increase by a factor of 1.2–1.8 and 1.5–3.5, respectively, when compared to data obtained for the basic grooved channel; however, the accompanying pressure drop penalties also increased significantly. Received on 5 April 2001  相似文献   

9.
We consider the laminar boundary layer of a compressible electrically conducting gas formed at the conducting wall of the channel. We assume that the charged particle concentration in the field of the flow is distinct from the equilibrium distribution. We take into account the destruction of the quasi-neutrality of the gas in a narrow layer at the wall. We assume that the Debye length is much greater than the mean free path length of the charged particles. We investigate the case when the emission currents are substantial.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 164–169, May–June, 1971.  相似文献   

10.
This paper presents an analysis of the combined electro-osmotic and pressure-driven axial flows of viscoelastic fluids in a rectangular microchannel with arbitrary aspect ratios. The rheological behavior of the fluid is described by the complete form of Phan-Thien–Tanner (PTT) model with the Gordon–Schowalter convected derivative which covers the upper convected Maxwell, Johnson–Segalman and FENE-P models. Our numerical simulation is based on the computation of 2D Poisson–Boltzmann, Cauchy momentum and PTT constitutive equations. The solution of these governing nonlinear coupled set of equations is obtained by using the second-order central finite difference method in a non-uniform grid system and is verified against 1D analytical solution of the velocity profile with less than 0.06% relative error. Also, a parametric study is carried out to investigate the effect of channel aspect ratio (width to height), wall zeta potential and the Debye–Hückel parameter on 2D velocity profile, volumetric flow rate and the Poiseuille number in the mixed EO/PD flows of viscoelastic fluids with different Weissenberg numbers. Our results show that, for low channel aspect ratios, the previous 1D analytical models underestimate the velocity profile at the channel half-width centerline in the case of favorable pressure gradients and overestimate it in the case of adverse pressure gradients. The results reveal that the inapplicability of the Debye–Hückel approximation at high zeta potentials is more significant for higher Weissenberg number fluids. Also, it is found that, under the specified values of electrokinetic parameters, there is a threshold for velocity scale ratio in which the Poiseuille number is approximately independent of channel aspect ratio.  相似文献   

11.
A general wall function treatment is presented for the numerical modeling of laminar magnetohydrodynamic (MHD) flows. The wall function expressions are derived analytically from the steady-state momentum and electric potential equations, making use only of local variables of the numerical solution. No assumptions are made regarding the orientation of the magnetic field relative to the wall, nor of the magnitude of the Hartmann number, or the wall conductivity. The wall functions are used for defining implicit boundary conditions for velocity and electric potential, and for computing mass flow and electrical currents in near wall-cells. The wall function treatment was validated in a finite volume formulation, and compared with an analytic solution for a fully developed channel flow in a transverse magnetic field. For the case with insulating walls, a uniform 20×20 grid, and Hartmann numbers Ha={10,30,100}, the accuracy of pressure drop and wall shear stress predictions was {1.1%,1.6%,0.5%}, respectively. Comparable results were obtained also with conducting Hartmann walls. The accuracy of predicted pressure drop and wall shear stress was essentially independent of the resolution of the Hartmann layers. When applied also to the parallel walls, the wall functions reduced the errors by a factor two to three. The wall functions can be implemented in any general flow solver, to allow accurate predictions at reasonable cost even for complex geometries and nonuniform magnetic fields.  相似文献   

12.
A tracking method and statistical analysis is introduced to quantify the mixing of moving droplets in the Lagrangian reference frame. Aqueous microrheology samples are produced as droplets in immiscible oil using a microfluidic T-junction. Samples from initially unmixed streams of the same viscosity-fluids (water/water) or different viscosity-fluids (water/glycerin solution) are dyed with different colors to visualize their internal motions and to quantify the extent of their mixing as a function of the age in the channel. The homogeneity of the material distribution in the drop is quantified by computing skewness of pixel intensity profiles or Shannon entropy index. Such analysis is important to ensure that samples are uniformly mixed for high-throughput rheological measurements using microrheology. Samples with a high viscosity ratio mix more rapidly than those with the same viscosities and the mixing length in traversing drops in the microchannel decays exponentially with traveling displacement until the drop reaches a diffusion limit.  相似文献   

13.
The steady/unsteady electroosmotic flow in an infinitely extended cylindrical channel with diameters ranging from 10 to 100 nm has been investigated. A mixture of (NaCl + H2O) is considered for the numerical calculation of the mass, potential, velocity, and mixing efficiency. Results are obtained for the channel diameters are small, equal, or greater than the electric double layer (EDL) both for steady and unsteady cases. In the present discussion, a symmetrical distribution of mole fractions is considered at the wall interface. Hence, the velocity and potential are symmetrical in nature toward the centerline of the channel, and also identical in nature at maximum and minimum time levels (i.e., at π/2 and 3π/2 for a periodic function) in the transient case. In case of steady flows, the velocity and potential satisfy the chemical equilibrium condition at the centerline. It is observed that the electric double layer reaches a local equilibrium in the presence of electroosmosis when the channel length is long compared to the characteristic hydraulic diameter and the flow is essentially one-dimensional, which depends only on channel diameter. Comparisons of NP (Nernst Plank) model with PB (Poisson–Boltzmann) model are achieved out for different published results at larger channel diameters.  相似文献   

14.
The problem investigated relates the plane unsteady flow of a viscous incompressible fluid in a narrow channel one of whose walls is free and acted upon by a given load, while the other is rigidly fixed. The fluid enters the channel through a porous insert in the stationary wall. A model of the flow of a thin film of viscous incompressible fluid and Darcy's law for flow in a porous medium are used to find the distribution of fluid pressure and velocity in the channel and the porous insert in the two-dimensional formulation for fairly general boundary conditions in the case where the length of the porous insert exceeds the length of the free wall. In the particular case where the length of the porous insert is equal to the length of the free wall an exact stationary solution of the problem is obtained for a given value of the channel height. The stability of the equilibrium position of the free wall supported on a hydrodynamic fluid film is examined.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 16–24, January–February, 1986.  相似文献   

15.
A Galerkin finite element method and two finite difference techniques of the control volume variety have been used to study magnetohydrodynamic channel flows as a function of the Reynolds number, interaction parameter, electrode length and wall conductivity. The finite element and finite difference formulations use unequally spaced grids to accurately resolve the flow field near the channel wall and electrode edges where steep flow gradients are expected. It is shown that the axial velocity profiles are distorted into M-shapes by the applied electromagnetic field and that the distortion increases as the Reynolds number, interaction parameter and electrode length are increased. It is also shown that the finite element method predicts larger electromagnetic pinch effects at the electrode entrance and exit and larger pressure rises along the electrodes than the primitive-variable and streamfunction–vorticity finite difference formulations. However, the primitive-variable formulation predicts steeper axial velocity gradients at the channel walls and lower axial velocities at the channel centreline than the streamfunction–vorticity finite difference and the finite element methods. The differences between the results of the finite difference and finite element methods are attributed to the different grids used in the calculations and to the methods used to evaluate the pressure field. In particular, the computation of the velocity field from the streamfunction–vorticity formulation introduces computational noise, which is somewhat smoothed out when the pressure field is calculated by integrating the Navier–Stokes equations. It is also shown that the wall electric potential increases as the wall conductivity increases and that, at sufficiently high interaction parameters, recirculation zones may be created at the channel centreline, whereas the flow near the wall may show jet-like characteristics.  相似文献   

16.
Fluid flow and solute transport in a 3D rough-walled fracture–matrix system were simulated by directly solving the Navier–Stokes equations for fracture flow and solving the transport equation for the whole domain of fracture and matrix with considering matrix diffusion. The rough-walled fracture–matrix model was built from laser-scanned surface tomography of a real rock sample, by considering realistic features of surfaces roughness and asperity contacts. The numerical modeling results were compared with both analytical solutions based on simplified fracture surface geometry and numerical results by particle tracking based on the Reynolds equation. The aim is to investigate impacts of surface roughness on solute transport in natural fracture–matrix systems and to quantify the uncertainties in application of simplified models. The results show that fracture surface roughness significantly increases heterogeneity of velocity field in the rough-walled fractures, which consequently cause complex transport behavior, especially the dispersive distributions of solute concentration in the fracture and complex concentration profiles in the matrix. Such complex transport behaviors caused by surface roughness are important sources of uncertainty that needs to be considered for modeling of solute transport processes in fractured rocks. The presented direct numerical simulations of fluid flow and solute transport serve as efficient numerical experiments that provide reliable results for the analysis of effective transmissivity as well as effective dispersion coefficient in rough-walled fracture–matrix systems. Such analysis is helpful in model verifications, uncertainty quantifications and design of laboratorial experiments.  相似文献   

17.
Flow boiling heat transfer in a vertical spirally internally ribbed tube   总被引:3,自引:0,他引:3  
 Experiments of flow boiling heat transfer and two-phase flow frictional pressure drop in a spirally internally ribbed tube (φ22×5.5 mm) and a smooth tube (φ19×2 mm) were conducted, respectively, under the condition of 6×105 Pa (absolute atmosphere pressure). The available heated length of the test sections was 2500 mm. The mass fluxes were selected, respectively, at 410, 610 and 810 kg/m2 s. The maximum heat flux was controlled according to exit quality, which was no more than 0.3 in each test run. The experimental results in the spirally internally ribbed tube were compared with that in the smooth tube. It shows that flow boiling heat transfer coefficients in the spirally internally ribbed tube are 1.4–2 times that in the smooth tube, and the flow boiling heat transfer under the condition of smaller temperature differences can be achieved in the spirally internally ribbed tube. Also, the two-phase flow frictional pressure drop in the spirally internally ribbed tube increases a factor of 1.6–2 as compared with that in the smooth tube. The effects of mass flux and pressure on the flow boiling heat transfer were presented. The effect of diameters on flow boiling heat transfer in smooth tubes was analyzed. Based on the fits of the experimental data, correlations of flow boiling heat transfer coefficient and two-phase flow frictional factor were proposed, respectively. The mechanisms of enhanced flow boiling heat transfer in the spirally internally ribbed tube were analyzed. Received on 1 December 1999  相似文献   

18.
In the present study, the regionally-averaged heat transfer coefficients and flow temperature distributions were measured in an equilateral triangular channel with three different rib arrangements (α = 45, 90 and 135°). To measure regionally-averaged heat transfer coefficients in the channel, two rows of copper blocks and a single heater were installed on two ribbed walls. The fluid temperature distributions were obtained using a thermocouple-array. The rotation number ranged from 0.0 to 0.1 with a fixed Reynolds number of 10,000. For the 90° ribs, the heat transfer coefficients on the pressure side surface were increased significantly with rotation, while the suction side surface had lower heat transfer coefficients than the stationary channel. For the angled ribs, rib-induced secondary flow dominated the heat transfer characteristics and high heat transfer rates were observed on the regions near the inner wall for the 45° angled ribs and near the leading edge for the 135° angled ribs.  相似文献   

19.
The problem of boundary layer flow on a nonconducting wall has been considered in [1–3]. Therein, it was assumed that either the problem is self-similar [1], or the solution was found in the form of a power series in a small parameter [2,3]. The objective of these assumptions is to reduce the boundary layer equations to ordinary differential equations. In the present work the problem is solved without making these assumptions. The distribution along the channel length of the frictional resistance and heat transfer coefficients on the wall are obtained, and the variation of these coefficients with the load parameter is studied.  相似文献   

20.
Drag enhancement is reported for turbulent pipe flow of aqueous electrolyte solutions. No electroviscous effect was obtained with laminar flow. Nor was any unusual pressure drop observed for laminar or turbulent flow of non-electrolyte aqueous solutions such as sugar. An electroviscous theory was advanced that predicted the drag enhancement for a 1/1 electrolyte solution. The theory depended on consideration of Debye length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号