首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A chloride ion‐selective electrode (ISE) membrane was developed by using a copolymeric ion‐exchanger resin (trimethyl ethenyl quaternary ammonium chloride polystyrene‐divinylbenzene copolymer resin, TMEQAC PSDVB), the ionophore ({μ‐[4,5‐Dimethyl‐3,6‐bis(dodecyloxy)‐1,2‐phenylene]}bis(mercury chloride), ETH9033), the plasticizer (bis(2‐ethylhexyl) sebacate, DOS), and the membrane substrate (polyvinylchloride, PVC). At 25 °C, the electrode exhibited an ideal Nernstian response of 59.2 mV/decade with the linear calibration concentration range from 1.0 × 10?4‐1.0 × 10?2 M (r2 = 0.9930). The limit of detection was 2.45 ppm (6.9 × 10?2 mM) and the measurement response time was less than 10 seconds. The working temperature range of electrode was 10‐45 °C. The working pH range for chloride ion measurement was 2.0‐11.0. Among the various anions examined in this work, only I?, SCN?, and MnO4? ions show significant interference to the electrode measurement. The chloride ISE can be used at least 72 days. The determination of chloride ion content in three kinds of environmental water sample with the electrode method was accurate (92‐95%) and precise (RSD < 4.4%) and did not show significance difference from the high‐performance liquid chromatography method.  相似文献   

2.
《Electroanalysis》2004,16(16):1336-1342
The construction, performance characteristics, and application of polymeric membrane (PME) and coated graphite (CGE) thiocyanate‐selective electrodes are reported. The electrodes were prepared by incorporating the complex [Cu(L)](NO3)2 (L=4,7‐bis(3‐aminopropyl)‐1‐thia‐4,7‐diazacyclononane) into a plasiticized poly(vinyl chloride) membrane. The influence of membrane composition, pH of test solution, and foreign ions were investigated. The electrodes reveal Nernstian behavior over a wide SCN? ion concentration range (1.0×10?6–1.0×10?1 M for PME and 5.0×10?7–1.0×10?2 M for CGE) and show fast dynamic response times of 15 s and lower. The proposed sensors show high selectivity towards thiocyanate over several common organic and inorganic anions. They were successfully applied to the direct determination of thiocyanate in urine and saliva of smokers and nonsmokers, and as an indicator electrode in titration of Ag+ ions with thiocyanate.  相似文献   

3.
Poly[aniline(AN)‐co‐5‐sulfo‐2‐anisidine(SA)] nanograins with rough and porous structure demonstrate ultrastrong adsorption and highly efficient recovery of silver ions. The effects of five key factors—AN/SA ratio, AgI concentration, sorption time, ultrasonic treatment, and coexisting ions—on AgI adsorbability were optimized, and AN/SA (50/50) copolymer nanograins were found to exhibit much stronger AgI adsorption than polyaniline and all other reported sorbents. The maximal AgI sorption capacity of up to 2034 mg g?1 (18.86 mmol g?1) is the highest thus far and also much higher than the maximal Hg‐ion sorption capacity (10.28 mmol g?1). Especially at ≤2 mM AgI, the nanosorbents exhibit ≥99.98 % adsorptivity, and thus achieve almost complete AgI sorption. The sorption fits the Langmuir isotherm well and follows pseudo‐second‐order kinetics. Studies by IR, UV/Vis, X‐ray diffraction, polarizing microscopy, centrifugation, thermogravimetry, and conductivity techniques showed that AgI sorption occurs by a redox mechanism mainly involving reduction of AgI to separable silver nanocrystals, chelation between AgI and ? NH? /? N?/? NH2/ ? SO3H/? OCH3, and ion exchange between AgI and H+ on ? SO3?H+. Competitive sorption of AgI with coexisting Hg, Pb, Cu, Fe, Al, K, and Na ions was systematically investigated. In particular, the copolymer nanoparticles bearing many functional groups on their rough and porous surface can be directly used to recover and separate precious silver nanocrystals from practical AgI wastewaters containing Fe, Al, K, and Na ions from Kodak Studio. The nanograins have great application potential in the noble metals industry, resource reuse, wastewater treatment, and functional hybrid nanocomposites.  相似文献   

4.
本文利用超微铂电极和循环伏安法研究了在碱金属碘化物与冠醚或穴醚配合物的3-甲氧基丙腈(MePN)溶液中I3-和I-的氧化还原行为。发现I3-和I-在其中的表观扩散系数与阳离子有关,且I3-的表观扩散系数符合以下规律:1,2-二甲基-3-丙基咪唑阳离子(DMPI+)> [Na(¯¯15-C-5]+ > [K(¯¯18-C-6]+ > [Na(¯¯2.2.1-cryptand]+,I-的表观扩散系数则为:[Na(¯¯2.2.1-cryptand]+> [Na(¯¯15-C-5]+ ≈[K(¯¯18-C-6]+> DMPI+。比较了由上述配合物和1,2-二甲基-3-丙基咪唑碘(DMPII)组成的染料敏化纳米薄膜太阳电池(DSC)的光伏性能,结果表明由上述配合物组成的DSC,其短路电流略高于DMPII,填充因子略低于DMPII,这与I-和I3-在其中的表观扩散系数的大小是相一致的。此外,电解质溶液中的溶剂对DSC的光电转换效率也有较大影响,以MePN为溶剂,含DMPII的DSC的光电转换效率要高于[K(¯¯18-C-6]I,而以乙腈为溶剂,两者的光电转换效率并没有明显的差别。  相似文献   

5.
Solvent extraction of a mixture of PbII, MnII, FeIII, CoII, NiII and CdII in aqueous perchlorate medium by a phosphorylated hexahomotrioxacalix[3]arene (calix‐3) in dichloromethane shows a significant selectivity towards lead ions. The ligand can also be incorporated into a membrane to provide a new lead ion‐selective electrode (PbII‐ISE). A plasticized PVC membrane containing 30% PVC, 53.5% ortho‐nitrophenyloctylether (NPOE), 4.5% sodium tetraphenylborate (NaTPB) and 12% ionophore was directly coated on a graphite rod. This sensor gave a good Nernstian response of 29.7 ± 0.7 mV decade?1 over a concentration range of 1 × 10?8 – 1 × 10?4 M of lead ions, independent of pH in the range 3‐7, with a detection limit of 0.4 × 10?8 M. The dynamic response time of the electrode to achieve a steady potential was very fast and found to be less than 7 s. The selectivity relative to Ag+, NH4+, Li+, Na+, K+, Ca2+, Sr2+, Ba2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Fe3+, La3+, Sm3+, Dy3+, Er3+, Y3+ and Th4+ was examined. The electrode exhibits adequate stability with good reproducibility (with a slope of 29.6 ± 1.5 mV for 8 weeks). The characteristics of the sensor are compared with those of a tetraphosphorylated calix[4]arene (calix‐4) based PbII‐ISE, reported recently. The electrode was successfully used as an indicator electrode for a potentiometric titration of a lead solution using a standard solution of EDTA. The applicability of the sensor for lead ion measurements in various synthetic samples was also investigated.  相似文献   

6.
A DNA‐based biosensor was reported for detection of silver ions (Ag+) by electrochemical impedance spectroscopy (EIS) with [Fe(CN)6]4?/3? as redox probe and hybridization chain reaction (HCR) induced hemin/G‐quadruplex nanowire as enhanced label. In the present of target Ag+, Ag+ interacted with cytosine‐cytosine (C? C) mismatch to form the stable C? Ag+? C complex with the aim of immobilizing the primer DNA on electrode, which thus triggered the HCR to form inert hemin/G‐quadruplex nanowire with an amplified EIS signal. As a result, the DNA biosensor showed a high sensitivity with the concentration range spanning from 0.1 nM to 100 µM and a detection limit of 0.05 nM.  相似文献   

7.
《Electroanalysis》2005,17(11):1015-1018
A new pendant‐arm derivative of diaza‐18‐crown‐6, containing two oxime donor groups, has been synthesized and incorporated into a polyvinyl chloride (PVC) membrane ion‐selective electrode. The electrode shows selectivity for Ag+ ion, with a near Nernstian response. Pb2+, Cu2+, Hg2+, and Tl+ are major interfering ions, with Cd2+ having minor interference. The electrode shows no potentiometric response for the ions Mg2+, Al3+, K+, Ca2+, Ni2+, Fe3+, and La3+, and is responsive to H+ at pH<6.  相似文献   

8.
A new podand of 1,1′‐thia‐bis‐[1‐(chloroethan‐2‐acetamid‐α‐oxy)] naphtol was synthesized and used as a suitable carrier for Ag+ PVC membrane electrode. The electrode exhibited linear response with a Nernstian slope of (59.5±0.8 mV/decade) within a wide concentration range of 1.0×10?7 to 1.5×10?2 mol L?1 silver ions. The electrode had a fast response time of <10 s and detection limit of 8.6×10?8 mol L?1 with a working pH range from 3.7 to 9.0. The electrode was highly selective for Ag(I) ions over a large number of cations such as alkali, alkaline earth, and heavy metal ions. The proposed sensor has been applied as an indicator electrode for indirect determination of vitamin B1 in tablets by determination of Cl? ions in this compound with a standard solution of Ag(NO3).  相似文献   

9.
Two new highly selective triiodide electrodes have been prepared using charge‐transfer complex of iodine with cryptand 222 as an electroactive ionophore and nitrophenyl octyl ether as a plasticizing agent. The electrodes showed Nernstian response to triiodide ions over a concentration range from 1.0 × 10?;2 — 7.9 × 10?;7 M and from 1.0 × 10?;2 — 1 × 10?;6 M with detection limits of 6.3 × 10?;7 and 7.9 × 10?;7 M for cryptand and its charge‐transfer complex with iodine, respectively. The response times (t95%) of the sensors were 10 and 5 s. The membrane could be used for more than 1 month without any divergence in potentials. The proposed sensors exhibited very high selectivity for triiodide ion over other anions, and could be used in a wide pH range ?2–10. These electrodes were successfully applied as an indicator electrode in potentiometric titration of copper in ore samples.  相似文献   

10.
《Electroanalysis》2005,17(20):1828-1834
A recently synthesized azao‐containing Schiff's base N,N′‐adipylbis(5‐phenylazo salicylaldehyde hydrazone) was used as a suitable neutral ion carrier in construction of a highly selective La3+‐PVC membrane electrode. The electrode exhibits a Nernstian response with a slope of 19.4 mV decade?1 over a wide concentration range (1.0×10?6–1.0×10?2 M) and a limit of detection of 4.0×10?7 M (0.05 ppm). The electrode possesses a fast response time of ca. 10 s and can be used for at least 3 months without observing any deviation. The proposed electrode revealed excellent selectivity for La3+ over a wide variety of alkali, alkaline earth, transition and heavy metal ions and could be used in a pH range of 4.0–8.0. The practical utility of the electrode has been demonstrated by its use as an indicator electrode in the potentiometric titration of La3+ ions with EDTA and in determination of F? ion in some pharmaceutical preparations.  相似文献   

11.
《Electroanalysis》2006,18(10):1019-1027
A new PVC membrane potentiometric sensor for Ag(I) ion based on a recently synthesized calix[4]arene compound of 5,11,17,23‐tetra‐tert‐butyl‐25,27‐dihydroxy‐calix[4]arene‐thiacrown‐4 is developed. The electrode exhibits a Nernstian response for Ag(I) ions over a wide concentration range (1.0×10?2?1.0×10?6 M) with a slope of 53.8±1.6 mV per decade. It has a relatively fast response time (5–10 s) and can be used for at least 2 months without any considerable divergence in potentials. The proposed electrode shows high selectivity towards Ag+ ions over Pb2+, Cd2+, Co2+, Zn2+, Cu2+, Ni2+, Sr2+, Mg2+, Ca2+, Li+, K+, Na+, NH4+ ions and can be used in a pH range of 2–6. Only interference of Hg2+ is found. It is successfully used as an indicator electrode in potentiometric titration of a mixture of chloride, bromide and iodide ions.  相似文献   

12.
A composite graphite (CG) electrode modified with poly(2,6‐diaminopyridine) (PDAP) was used as solid state‐ion selective electrode for determination of mercury. The electrooxidation of monomer 2, 6 diaminopyridine (DAP) onto CG was accomplished from the 30 mM DAP in 5% H2SO4 and 0.5 M ZnSO4. The electrode displayed Nernstian response with slope of 28.4±1 mV decade−1 in concentration range of 1×10−6 to 1×10−1 M and in solution of pH 3–5. The limit of detection for electrode was 3×10−8 M with response time of 25 s. The electrode was also suitable as an indicator electrode in the potentiometric titration of Hg2+ with iodide.  相似文献   

13.
本文报道了一种以牛磺酸双核铜络合物为中性载体的硫氰酸根PVC膜电极。该电极对硫氰酸根有良好的电位响应并呈现出anti-Hofmeister行为,其选择性顺序SCN->I->ClO4->Sal->NO3-> NO2-> Br- > Cl- > SO3-> SO4 2-。在20℃ pH 5.0的磷酸缓冲溶液中,其线性范围为1.0´10 -1~ 1.0´10-6mol×L-1,检测线为8.0×10 -7mol•L-1,斜率为 -56.5 mV/pcSCN-。紫外、红外和交流阻抗研究表明电极的高选择性与载体的立体结构和分析物与中心金属离子的作用相关。将该电极用于废水和人体尿液中硫氰酸根的测定,获得了较满意的结果。  相似文献   

14.
《Electroanalysis》2002,14(24):1691-1698
Three different recently synthesized aza‐thioether crowns containing a 1,10‐phenanthroline sub‐unit (L1–L3) and a corresponding acyclic ligand (L4) were studied to characterize their abilities as silver ion ionophores in PVC‐membrane electrodes. Novel conventional silver‐selective electrodes with internal reference solution (CONISE) and coated graphite‐solid contact electrodes (SCISE) were prepared based on one of the 15‐membered crowns containing two donating S atoms and two phenanthroline‐N atoms (L1). The electrodes reveal a Nernstian behavior over wide Ag+ ion concentration ranges (1.0×10?5?1.0×10?1 M for CONISE and 5.0×10?8?4.0×10?2 M for SCISE) and very low limits of detection (8.0×10?6 M for CONISE and 3.0×10?8 M for SCISE). The potentiometric response is independent from pH of the solution in the pH range 3.0–8.0. The electrodes manifest advantages of low resistance, very fast response and, most importantly, good selectivities relative to a wide variety of other cations. The electrodes can be used for at least 2 months (for CONISE) and 4 months for (SCISE) without any appreciable divergence in potentials. The electrodes were used as an indicator electrode in the potentiometric titration of Ag+ ion and in the determination of silver in photographic emulsions and in radiographic and photographic films.  相似文献   

15.
Poly(vinyl chloride)‐based membranes of salen ligands, 2‐((E)‐((1R,2S)‐2‐((E)‐5‐tert‐butyl‐2‐hydroxybenzylideneamino)cyclohexylimino)methyl)‐4‐tert‐butyl phenol (S1) and 2‐((E)‐((1R,2S)‐2‐((E)‐3,5‐di‐tert‐butyl‐2‐hydroxybenzylideneamino)cyclohexylimino)methyl)‐4,6‐di‐tert‐butylphenol (S2) were fabricated and explored as cobalt(II) selective electrodes. The performance of the polymeric membrane electrode (PME) and coated graphite electrode (CGE) were compared and it was observed that CGE showed a wide working concentration range of 1.1×10?8 to 1.0×10?1 mol L?1 with a limit of detection of 7.0×10?9 mol L?1 exhibiting the Nernstian slope 29.6 mV/decade of activity in the pH range 3.0–9.0. It was used for the determination of cobalt(II) ions in water, soil, beer, pharmaceutical samples and medicinal plants and would be used as an indicator electrode in potentiometric titration with EDTA.  相似文献   

16.
A novel membrane sensor for selective monitoring of iodide, consisting of a triiodide‐ketoconazole ion pair complex dispersed in a PVC matrix, plasticized with a mixture of 2‐nitrophenyl octyl ether and dioctylphtalate with unique selectivity toward iodide ions, is described. The influence of membrane composition, pH of test solution and foreign ions on the electrode performance were investigated. The optimized membrane demonstrates a near‐Nernstian response for iodide ions over a wide linear range from 1.0 × 10?2 to 1.0 × 10?5 M, at 25 ± 1 °C. The electrode could be used over a wide pH range 3–10 and has the advantages of high selectivity, fast response time and good lifetime (over 4 months). It was successfully used as indicator electrode in potentiometric titrations and direct potentiometric assay of iodide ions.  相似文献   

17.
A new ion selective electrode for salicylate based on N,N'-(aminoethyl)ethylenediamide bis(2-salicylideneimine) binuclear copper(Ⅱ) complex [Cu(Ⅱ)2-AEBS] as an ionophore was developed. The electrode has a linear range from 1.0 × 10^-1 to 5.0 ×10^-7 mol·L^- 1 with a near-Nemstian slope of ( - 55 ±1 ) mV/decade and a detection limit of 2.0 × 10-7 mol·L^-1 in phosphorate buffer solution of pH 5.0 at 25 ℃. It shows good selectivity for Sal^- and displays anti-Hofmeister selectivity sequence: Sal^-〉SCN^-〉 ClO4^- 〉I^-〉 NO2^- 〉Br^-〉 NO3^- 〉Cl^-〉 SO3^2- 〉 SO4^2- The proposed sensor based on binuclear copper(Ⅱ)complex has a fast response time of 5-10 s and can be used for at least 2 months without any major deviation. The response mechanism is discussed in view of the alternating current (AC) impedance technique and the UV-vis spectroscopy technique. The effect of the electrode membrane compositions and the experimental conditions were studied. The electrode has been successfully used for the determination of salicylate ion in drug pharmaceutical preparations.  相似文献   

18.
Novel Zn2+ ion‐selective PVC based coated graphite electrodes were fabricated using the ionophores N‐((1H‐indol‐3‐yl)methylene)thiazol‐2‐amine (I1), N‐((1H‐indol‐3‐yl)methyl)‐thiazol‐2‐amine (I2) and 1‐((1H‐indol‐3‐yl)methylene)urea (I3). Their potentiometric performance was examined in dependence of the addition of plasticizers and anion excluders and compared. It is found that the coated graphite electrode with the composition I1:KTpClPB:o‐NPOE:PVC=9 : 1.5 : 51 : 38.5 is the best with respect to the wide working concentration range (4.2×10?8–1.0×10?1 mol L?1), low detection limit (1.6×10?8 mol L?1) and wide pH range of 3.0–8.0. The proposed electrode was successfully applied to quantify Zn2+ in various environmental, biological and medicinal plant samples and used as indicator electrode.  相似文献   

19.
A silver selective electrode based on TEPQA‐MCM‐41 material was developed and used for the selective determination of Ag+ ion in various samples. The effect of various plasticizers i. e. dimethyl phthalate (DMP), Tris(ethylhexyl)phosphate (TEP), bis‐(2‐ethylhexyl)sebacate (BEHS), bis‐(2‐ethylhexyl)adipate (BEHA) was investigated. The electrode of the composition of 2 : 1 : 77 : 12 : 8 (w/w, %) of TEPQA‐MCM‐41 : NaTPB : Graphite powder : paraffin oil : DMP respectively, works satisfactorily in a wide concentration range of 1.3×10?9 M–1.0×10?1 M for Ag+ ion with a lower detection limit (LOD) of 1.0×10?9 M and has Nernstian slope of 63.4 1 mV/decay. The electrode can be used in a pH range of 2.3 to 6.7 for a period of 3 months without any divergence in potential response. The selectivity coefficient calculated by fixed interference method indicates the high selectivity of the electrode towards Ag+ ion over other tested cations.  相似文献   

20.
This work presents the results obtained on the construction of a potentiometric ion‐selective electrode based on a polypyrrole (PPy) selective membrane to quantify the benzoate ion in nonalcoholic beverages. The electrode modification with benzoate (Benz?1) ion doped‐Ppy was carried out under an imposed potential, while the electrosynthesis optimization was undertaken using the modified Simplex method, such that the film’s sensitivity was maximized toward the benzoate ion. The maximum sensitivity recorded was ?52.02±1.55 mV/decade [Benz?1] using a graphite powder‐araldite resin composite electrode. During the modified electrode’s characterization it was found out that the response and drift were relatively short, namely 2 min and 0.4 mV min?1 respectively, within the 7 to 9 pH range, exhibiting a detection limit of 7×10?4 mol L?1 and a quantification range of 3×10?3 at 10?1 mol L?1. Selectivity coefficients were evaluated with the Matched Potential Method obtaining in all cases values much less than 1. The benzoate concentration in commercially available juices and sweetened beverages was evaluated comparing the results obtained with the proposed ion‐selective electrode and those of HPLC, the usually accepted technique. A statistical analysis of the results led to the conclusion that there exists no meaningful difference between the results obtained with both techniques, which shows the usefulness of the ion‐selective electrode to proceed with the quantification in real samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号