首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we consider the problem of finding the stress distribution in a highly stretched plate containing a circular hole that is eccentrically reinforced by thickening the plate, on one side only, in an annular region concentric with the hole. A solution of the nonlinear Kármán plate equations is obtained that is asymptotically valid for large membrane stresses. We show that, except for a narrow bending boundary layer in the neighbourhood of the boundary between the reinforced area and the rest of the plate, a state of plane stress prevails and the reinforced area undergoes a transverse deflection that brings its middle surface into the plane of the middle surface of the plate.  相似文献   

2.
3.
Republic Intercollegiate Computer Center, Kishinev. Translated from Prikladnaya Mekhanika, Vol. 27, No. 11, pp. 90–96, November, 1991.  相似文献   

4.
A perfect rigid–plastic body is used as a model to develop a general procedure for analyzing the dynamic behavior of an arbitrary curvilinear plate of variable thickness with an arbitrary internal hole. The plate is subjected to an arbitrary, uniform, short-term dynamic surface load. Two plate deformation patterns are considered. Analytic formulas for plastic zones, ultimate loads, and residual deflections are presented. Numerical examples are given  相似文献   

5.
6.
7.
8.
In this paper, Muskhelishvili complex function theory and boundary collocation method are used to calculate the stress intensity factors (SIF) of a plate with two cracks emanating from an arbitrary hole. The calculated examples include a circular, elliptical, rectangular, or rhombic hole in a plate. The principle and procedure by the method is not only rather simple, but also has good accuracy. The SIF values calculated compare very favorably with the existing solutions. At the same time,the method can be used for different finite plate with two cracks emanating from a hole with more complex geometrical and loading conditions. It is an effective unified approach for this kind of fracture problems.  相似文献   

9.
Ming Dai  Cun-Fa Gao  C. Q. Ru 《Meccanica》2014,49(12):2847-2859
This paper studies surface tension-induced stress concentration around a nanosized hole of arbitrary shape inside an elastic half-plane. Of particular interest is the maximum hoop stress on the hole’s boundary with relation to the point of maximum curvature and the distance between the hole and the free surface of the half-plane. The shape of the hole is characterized by a conformal mapping which maps the exterior of the hole onto the exterior of the unit circle in the image plane. On using the technique of conformal mapping and analytic continuation, the complex potentials of the half-plane are expressed in a series form with unknown coefficients to be determined by Fourier expansion method. Detailed numerical results are shown for elliptical, triangular, square and rectangular holes. Two basic conclusions are that the hoop stress increases with decreasing hole size and the maximum hoop stress generally appears nearby but not exactly at the point of maximum curvature. In addition, it is shown that the hoop stress nearby the point of maximum curvature on the hole’s boundary increases rapidly with decreasing distance between the hole and the free surface of the half-plane. On the other hand, if the distance between the hole and the free surface is more than three times the hole size, the effect of the free surface on the stress concentration around the hole is ignorable and the elastic half-plane can be treated approximately as an elastic whole plane.  相似文献   

10.
Stress distributions are measured around the reinforced circular hole in an infinite plate subjected to uniaxial tension. Test plates are made of aluminum and reinforcing rings are of aluminum, brass, copper and mild steel. The relationships between stress-concentration factors, the ratio of Young's moduli of a plate and rings and dimensions of rings are studied. Results are compared with those obtained by the other authors and Gurney's theoretical results.  相似文献   

11.
Photoelastic plates made of an orthotropic material are used to model the dynamic stress state near free and reinforced circular holes under blast loading. The diffraction of stress waves by holes in a thin-walled plate is studied. Experimental data are used to analyze the dynamic stress concentration in a plate with a hole in which quasilongitudinal and quasitransverse waves propagate __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 7, pp. 73–78, July 2007.  相似文献   

12.
13.
A numerical algorithm without saturation which provides reliable results on a coarse grid was developed to solve the problem of free vibrations of a free-edge variable-thickness plate of arbitrary shape in plan. The results were compared with the results of calculations performed in other studies.  相似文献   

14.
15.
16.
17.
含椭圆孔弹性平面基本解   总被引:1,自引:1,他引:0  
运用复变函数保角变换与解析延拓方法,获得含椭圆孔无限弹性平面任意位置作用集中力的基本解,并由此获得含有限长裂纹弹性平面基本解,可作为弹性力学的典型问题.该方法较以往文献更为简捷.  相似文献   

18.
Summary  Within the scope of linear elasticity, the in-plane problem of an anisotropic plate or laminate with a circular hole and an elliptical hole reinforcement is considered. Arbitrary anisotropic elastic stiffnesses are allowed for the base plate and the reinforcement material, and for the reinforcement there is no restriction for its elliptical shape and size. The analysis of the problem is performed by the complex potential method with appropriately chosen series representations inside and outside the reinforcement region. The derived closed-form solution provides all resultant in-plane stresses and deformations within and around the hole reinforcement with little computational effort and at high accuracy. The determined solution allows a proper and effective assessment of hole reinforcements for many technical applications. Received 26 June 2000; accepted for publication 26 September 2000  相似文献   

19.
Novosibirsk. Translated from Prikladnaya Mekhanika, Vol. 25, No. 8, pp. 94–100, August, 1989.  相似文献   

20.
This paper presents an exact solution for the stresses in an infinite shape memory alloy plate with a circular hole subjected to biaxial tensile stresses applied at infinity. The solution obtained by assumption of plane stress is based on the two-dimensional version of the Tanaka constitutive law for shape memory materials. The plate is in the austenitic phase, prior to the application of external stresses. However, as a result of tensile loading, stress-induced martensite forms, beginning from the boundary of the hole and extending into the interior, as the load continues to increase. Therefore, in a general case, the plate consists of three annular regions: the inner region of pure martensite, the intermediate region where martensite and austenite coexist, and the outer region of pure austenite. The boundaries between these annular regions can be found as functions of the external stress. Two methods of solution are presented. The first is a closed-form approach based on a replacement of the actual distribution of the martensitic fraction by a piece-wise constant function of the radial coordinate. The second method results in an exact solution obtained by assuming that the ratio between the radial and circumferential stresses in the region where austenite and martensite coexist is governed by the same relationship as that in the encompassing regions of pure austenite and pure martensite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号