首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let G be a connected graph and let eb(G) and λ(G) denote the number of end‐blocks and the maximum number of disjoint 3‐vertex paths Λ in G. We prove the following theorems on claw‐free graphs: (t1) if G is claw‐free and eb(G) ≤ 2 (and in particular, G is 2‐connected) then λ(G) = ⌊| V(G)|/3⌋; (t2) if G is claw‐free and eb(G) ≥ 2 then λ(G) ≥ ⌊(| V(G) | − eb(G) + 2)/3 ⌋; and (t3) if G is claw‐free and Δ*‐free then λ(G) = ⌊| V(G) |/3⌋ (here Δ* is a graph obtained from a triangle Δ by attaching to each vertex a new dangling edge). We also give the following sufficient condition for a graph to have a Λ‐factor: Let n and p be integers, 1 ≤ pn − 2, G a 2‐connected graph, and |V(G)| = 3n. Suppose that GS has a Λ‐factor for every SV(G) such that |S| = 3p and both V(G) − S and S induce connected subgraphs in G. Then G has a Λ‐factor. © 2001 John Wiley & Sons, Inc. J Graph Theory 36: 175–197, 2001  相似文献   

2.
We show that if G is a 4‐connected claw‐free graph in which every induced hourglass subgraph S contains two non‐adjacent vertices with a common neighbor outside S, then G is hamiltonian. This extends the fact that 4‐connected claw‐free, hourglass‐free graphs are hamiltonian, thus proving a broader special case of a conjecture by Matthews and Sumner. © 2005 Wiley Periodicals, Inc. J Graph Theory 48: 267–276, 2005  相似文献   

3.
The restricted‐edge‐connectivity of a graph G, denoted by λ′(G), is defined as the minimum cardinality over all edge‐cuts S of G, where GS contains no isolated vertices. The graph G is called λ′‐optimal, if λ′(G) = ξ(G), where ξ(G) is the minimum edge‐degree in G. A graph is super‐edge‐connected, if every minimum edge‐cut consists of edges adjacent to a vertex of minimum degree. In this paper, we present sufficient conditions for arbitrary, triangle‐free, and bipartite graphs to be λ′‐optimal, as well as conditions depending on the clique number. These conditions imply super‐edge‐connectivity, if δ (G) ≥ 3, and the equality of edge‐connectivity and minimum degree. Different examples will show that these conditions are best possible and independent of other results in this area. © 2005 Wiley Periodicals, Inc. J Graph Theory 48: 228–246, 2005  相似文献   

4.
A graph G is N2locally connected if for every vertex ν in G, the edges not incident with ν but having at least one end adjacent to ν in G induce a connected graph. In 1990, Ryjá?ek conjectured that every 3‐connected N2‐locally connected claw‐free graph is Hamiltonian. This conjecture is proved in this note. © 2004 Wiley Periodicals, Inc. J Graph Theory 48: 142–146, 2005  相似文献   

5.
A set S of vertices in a graph G is a total dominating set of G if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set of G is the total domination number γt(G) of G. It is known [J Graph Theory 35 (2000), 21–45] that if G is a connected graph of order n > 10 with minimum degree at least 2, then γt(G) ≤ 4n/7 and the (infinite family of) graphs of large order that achieve equality in this bound are characterized. In this article, we improve this upper bound of 4n/7 for 2‐connected graphs, as well as for connected graphs with no induced 6‐cycle. We prove that if G is a 2‐connected graph of order n > 18, then γt(G) ≤ 6n/11. Our proof is an interplay between graph theory and transversals in hypergraphs. We also prove that if G is a connected graph of order n > 18 with minimum degree at least 2 and no induced 6‐cycle, then γt(G) ≤ 6n/11. Both bounds are shown to be sharp. © 2008 Wiley Periodicals, Inc. J Graph Theory 60: 55–79, 2009  相似文献   

6.
A subset S of vertices of a graph G is called cyclable in G if there is in G some cycle containing all the vertices of S. We denote by α(S, G) the number of vertices of a maximum independent set of G[S]. We prove that if G is a 3‐connected graph or order n and if S is a subset of vertices such that the degree sum of any four independent vertices of S is at least n + 2α(S, G) −2, then S is cyclable. This result implies several known results on cyclability or Hamiltonicity. © 2000 John Wiley & Sons, Inc. J Graph Theory 34: 191–203, 2000  相似文献   

7.
Suppose G is a simple connected n‐vertex graph. Let σ3(G) denote the minimum degree sum of three independent vertices in G (which is ∞ if G has no set of three independent vertices). A 2‐trail is a trail that uses every vertex at most twice. Spanning 2‐trails generalize hamilton paths and cycles. We prove three main results. First, if σ3G)≥ n ‐ 1, then G has a spanning 2‐trail, unless G ? K1,3. Second, if σ3(G) ≥ n, then G has either a hamilton path or a closed spanning 2‐trail. Third, if G is 2‐edge‐connected and σ3(G) ≥ n, then G has a closed spanning 2‐trail, unless G ? K2,3 or K (the 6‐vertex graph obtained from K2,3 by subdividing one edge). All three results are sharp. These results are related to the study of connected and 2‐edge‐connected factors, spanning k‐walks, even factors, and supereulerian graphs. In particular, a closed spanning 2‐trail may be regarded as a connected (and 2‐edge‐connected) even [2,4]‐factor. © 2004 Wiley Periodicals, Inc. J Graph Theory 45: 298–319, 2004  相似文献   

8.
An interval coloring of a graph is a proper edge coloring such that the set of used colors at every vertex is an interval of integers. Generally, it is an NP‐hard problem to decide whether a graph has an interval coloring or not. A bipartite graph G = (A,B;E) is (α, β)‐biregular if each vertex in A has degree α and each vertex in B has degree β. In this paper we prove that if the (3,4)‐biregular graph G has a cubic subgraph covering the set B then G has an interval coloring. © 2004 Wiley Periodicals, Inc. J Graph Theory 47: 122–128, 2004  相似文献   

9.
In this paper we prove two results. The first is an extension of a result of Dirac which says that any set of n vertices of an n‐connected graph lies in a cycle. We prove that if V′ is a set of at most 2n vertices in an n‐connected graph G, then G has, as a minor, a cycle using all of the vertices of V′. The second result says that if G is an n+1‐connected graph with maximum vertex degree Δ then G contains a subgraph that is a subdivision of W2n if and only if Δ≥2n. © 2009 Wiley Periodicals, Inc. J Graph Theory 62: 100–108, 2009  相似文献   

10.
The circular chromatic number of a graph is a well‐studied refinement of the chromatic number. Circular‐perfect graphs form a superclass of perfect graphs defined by means of this more general coloring concept. This article studies claw‐free circular‐perfect graphs. First, we prove that if G is a connected claw‐free circular‐perfect graph with χ(G)>ω(G), then min{α(G), ω(G)}=2. We use this result to design a polynomial time algorithm that computes the circular chromatic number of claw‐free circular‐perfect graphs. A consequence of the strong perfect graph theorem is that minimal imperfect graphs G have min{α(G), ω(G)}=2. In contrast to this result, it is shown in Z. Pan and X. Zhu [European J Combin 29(4) (2008), 1055–1063] that minimal circular‐imperfect graphs G can have arbitrarily large independence number and arbitrarily large clique number. In this article, we prove that claw‐free minimal circular‐imperfect graphs G have min{α(G), ω(G)}≤3. © 2010 Wiley Periodicals, Inc. J Graph Theory 65: 163–172, 2010  相似文献   

11.
Consider a graph G on n vertices satisfying the following Ore‐type condition: for any two nonadjacent vertices x and y of G, we have . We conjecture that if we color the edges of G with two colors then the vertex set of G can be partitioned to two vertex disjoint monochromatic cycles of distinct colors. In this article, we prove an asymptotic version of this conjecture.  相似文献   

12.
Let G be a connected graph with odd girth 2κ+1. Then G is a (2κ+1)‐angulated graph if every two vertices of G are connected by a path such that each edge of the path is in some (2κ+1)‐cycle. We prove that if G is (2κ+1)‐angulated, and H is connected with odd girth at least 2κ+3, then any retract of the box (or Cartesian) product GH is ST where S is a retract of G and T is a connected subgraph of H. A graph G is strongly (2κ+1)‐angulated if any two vertices of G are connected by a sequence of (2κ+1)‐cycles with consecutive cycles sharing at least one edge. We prove that if G is strongly (2κ+1)‐angulated, and H is connected with odd girth at least 2κ+1, then any retract of GH is ST where S is a retract of G and T is a connected subgraph of H or |V(S)|=1 and T is a retract of H. These two results improve theorems on weakly and strongly triangulated graphs by Nowakowski and Rival [Disc Math 70 ( 13 ), 169–184]. As a corollary, we get that the core of the box product of two strongly (2κ+1)‐angulated cores must be either one of the factors or the box product itself. Furthermore, if G is a strongly (2κ+1)‐angulated core, then either Gn is a core for all positive integers n, or the core of Gn is G for all positive integers n. In the latter case, G is homomorphically equivalent to a normal Cayley graph [Larose, Laviolette, Tardiff, European J Combin 19 ( 12 ), 867–881]. In particular, let G be a strongly (2κ+1)‐angulated core such that either G is not vertex‐transitive, or G is vertex‐transitive and any two maximum independent sets have non‐empty intersection. Then Gn is a core for any positive integer n. On the other hand, let Gi be a (2κi+1)‐angulated core for 1 ≤ in where κ1 < κ2 < … < κn. If Gi has a vertex that is fixed under any automorphism for 1 ≤ in‐1, or Gi is vertex‐transitive such that any two maximum independent sets have non‐empty intersection for 1 ≤ in‐1, then □i=1n Gi is a core. We then apply the results to construct cores that are box products with Mycielski construction factors or with odd graph factors. We also show that K(r,2r+1) □ C2l+1 is a core for any integers lr ≥ 2. It is open whether K(r,2r+1) □ C2l+1 is a core for r > l ≥ 2. © 2006 Wiley Periodicals, Inc. J Graph Theory  相似文献   

13.
A set S of vertices in a graph G is a total dominating set of G if every vertex of G is adjacent to some vertex in S (other than itself). The maximum cardinality of a minimal total dominating set of G is the upper total domination number of G, denoted by Γt(G). We establish bounds on Γt(G) for claw‐free graphs G in terms of the number n of vertices and the minimum degree δ of G. We show that if if , and if δ ≥ 5. The extremal graphs are characterized. © 2003 Wiley Periodicals, Inc. J Graph Theory 44: 148–158, 2003  相似文献   

14.
A noncomplete graph G is called an (n, k)‐graph if it is n‐connected and GX is not (n − |X| + 1)‐connected for any XV(G) with |X| ≤ k. Mader conjectured that for k ≥ 3 the graph K2k + 2 − (1‐factor) is the unique (2k, k)‐graph. We settle this conjecture for strongly regular graphs, for edge transitive graphs, and for vertex transitive graphs. © 2000 John Wiley & Sons, Inc. J Graph Theory 36: 35–51, 2001  相似文献   

15.
A graph of order n is p ‐factor‐critical, where p is an integer of the same parity as n, if the removal of any set of p vertices results in a graph with a perfect matching. 1‐factor‐critical graphs and 2‐factor‐critical graphs are factor‐critical graphs and bicritical graphs, respectively. It is well known that every connected vertex‐transitive graph of odd order is factor‐critical and every connected nonbipartite vertex‐transitive graph of even order is bicritical. In this article, we show that a simple connected vertex‐transitive graph of odd order at least five is 3‐factor‐critical if and only if it is not a cycle.  相似文献   

16.
We conjecture that, for each tree T, there exists a natural number kT such that the following holds: If G is a kT‐edge‐connected graph such that |E(T)| divides |E(G)|, then the edges of G can be divided into parts, each of which is isomorphic to T. We prove that for T = K1,3 (the claw), this holds if and only if there exists a (smallest) natural number kt such that every kt‐edge‐connected graph has an orientation for which the indegree of each vertex equals its outdegree modulo 3. Tutte's 3‐flow conjecture says that kt = 4. We prove the weaker statement that every 4$\lceil$ log n$\rceil$ ‐edge‐connected graph with n vertices has an edge‐decomposition into claws provided its number of edges is divisible by 3. We also prove that every triangulation of a surface has an edge‐decomposition into claws. © 2006 Wiley Periodicals, Inc. J Graph Theory 52: 135–146, 2006  相似文献   

17.
The First‐Fit (or Grundy) chromatic number of G, written as χFF(G), is defined as the maximum number of classes in an ordered partition of V(G) into independent sets so that each vertex has a neighbor in each set earlier than its own. The well‐known Nordhaus‐‐Gaddum inequality states that the sum of the ordinary chromatic numbers of an n‐vertex graph and its complement is at most n + 1. Zaker suggested finding the analogous inequality for the First‐Fit chromatic number. We show for n ≥ 10 that ?(5n + 2)/4? is an upper bound, and this is sharp. We extend the problem for multicolorings as well and prove asymptotic results for infinitely many cases. We also show that the smallest order of C4‐free bipartite graphs with χFF(G) = k is asymptotically 2k2 (the upper bound answers a problem of Zaker [9]). © 2008 Wiley Periodicals, Inc. J Graph Theory 59: 75–88, 2008  相似文献   

18.
Let G be a K1,r ‐free graph (r ≥ 3) on n vertices. We prove that, for any induced path or induced cycle on k vertices in G (k ≥ 2r − 1 or k ≥ 2r, respectively), the degree sum of its vertices is at most (2r − 2)(n − α) where α is the independence number of G. As a corollary we obtain an upper bound on the length of a longest induced path and a longest induced cycle in a K1,r ‐free graph. Stronger bounds are given in the special case of claw‐free graphs (i.e., r = 3). Sharpness examples are also presented. © 2001 John Wiley & Sons, Inc. J Graph Theory 36: 131–143, 2001  相似文献   

19.
A cut in a graph G = (V(G), E(G)) is the boundary δ(S) of some subset S η V(G) and the maximum cut problem for G is to find the maximum number of edges in a cut. Let MC(G) denote this maximum. For any given 0 < α < 1, ϵ > 0, and η, we give a randomized algorithm which runs in a polynomial time and which, when applied to any given graph G on n vertices with minimum degree ≥αn, outputs a cut δ(S) of G with $ P[|\delta(S)|\geq MC(G)(1-\epsilon)] \geq 1-2^{-n} $ We also show that the proposed method can be used to approximate MAXIMUM ACYCLIC SUBGRAPH in the unweighted case. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
An induced subgraph S of a graph G is called a derived subgraph of G if S contains no isolated vertices. An edge e of G is said to be residual if e occurs in more than half of the derived subgraphs of G. We introduce the conjecture: Every non-empty graph contains a non-residual edge. This conjecture is implied by, but weaker than, the union-closed sets conjecture. We prove that a graph G of order n satisfies this conjecture whenever G satisfies any one of the conditions: δ(G) ≤ 2, log2 n ≤ δ(G), n ≤ 10, or the girth of G is at least 6. Finally, we show that the union-closed sets conjecture, in its full generality, is equivalent to a similar conjecture about hypergraphs. © 1997 John Wiley & Sons, Inc. J Graph Theory 26: 155–163, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号