首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mixed convective flow of a steady, incompressible micropolar fluid over a stretching sheet has been studied. This situation may arise in polymer technology involving the stretching of plastics sheets. The resulting system of non-linear ordinary coupled differential equations has been solved by the finite element method, using the variational Ritz model. Numerical results obtained for velocity, microrotation and temperature distributions are shown graphically. It was found that an increase in the micropolar parameter leads to a faster rate of cooling of the sheet. Also the velocity increases with an increase in micropolar effects. Microrotation effects are much smaller for the no-spin boundary condition as compared to the other boundary condition which assumes that the gyration vector is identical to the angular velocity of the fluid. Received on 9 February 1998  相似文献   

2.
The theory of linear micropolar elasticity is used in conjunction with a new representation of micropolar surface mechanics to develop a comprehensive model for the deformations of a linearly micropolar elastic solid subjected to anti-plane shear loading. The proposed model represents the surface effect as a thin micropolar film of separate elasticity, perfectly bonded to the bulk. This model captures not only the micro-mechanical behavior of the bulk which is known to be considerable in many real materials but also the contribution of the surface effect which has been experimentally well observed for bodies with significant size-dependency and large surface area to volume ratios. The contribution of the surface mechanics to the ensuing boundary-value problem gives rise to a highly nonstandard boundary condition not accommodated by classical studies in this area. Nevertheless, the corresponding interior and exterior mixed boundary-value problems are formulated and reduced to systems of singular integro-differential equations using a representation of solutions in the form of modified single-layer potentials. Analysis of these systems demonstrates that the classical Noether theorems reduce to Fredholms theorems leading to results on well-posedness of the corresponding mathematical model.  相似文献   

3.
A mixture theory is developed for multi-component micropolar porous media with a combination of the hybrid mixture theory and the micropolar continuum theory. The system is modeled as multi-component micropolar elastic solids saturated with multi- component micropolar viscous fluids. Balance equations are given through the mixture theory. Constitutive equations are developed based on the second law of thermodynamics and constitutive assumptions. Taking account of compressibility of solid phases, the volume fraction of fluid as an independent state variable is introduced in the free energy function, and the dynamic compatibility condition is obtained to restrict the change of pressure difference on the solid-fluid interface. The constructed constitutive equations are used to close the field equations. The linear field equations are obtained using a linearization procedure, and the micropolar thermo-hydro-mechanical component transport model is established. This model can be applied to practical problems, such as contaminant, drug, and pesticide transport. When the proposed model is supposed to be porous media, and both fluid and solid are single-component, it will almost agree with Eringen's model.  相似文献   

4.
The present investigation is concerned with the wave propagation at an interface of a micropolar generalized thermoelastic solid half space and a heat conducting micropolar fluid half space. Reflection and transmission phenomena of plane waves are investigated, which impinge obliquely at the plane interface between a micropolar generalized thermoelastic solid half space and a heat conducting micropolar fluid half space.The incident wave is assumed to be striking at the interface after propagating through the micropolar generalized thermoelastic solid. The amplitude ratios of various reflected and transmitted waves are obtained in a closed form. It is found that they are a function of the angle of incidence and frequency and are affected by the elastic properties of the media. Micropolarity and thermal relaxation effects are shown on the amplitude ratios for a specific model. The results of some earlier literatures are also deduced from the present investigation.  相似文献   

5.
The possibility of plane wave propagation in a micropolar fluid of infinite extent has been explored. The reflection and transmission of longitudinal elastic wave at a plane interface between a homogeneous micropolar fluid half-space and a micropolar solid half-space has also been investigated. It is found that there can exist four plane waves propagating with distinct phase speeds in an infinite micropolar fluid. All the four waves are found to be dispersive and attenuated. The reflection and transmission coefficients are found to be the functions of the angle of incidence, the elastic properties of the half-spaces and the frequency of the incident wave. The expressions of energy ratios have also been obtained in explicit form. Frequency equation for the Stoneley wave at micropolar solid/fluid interface has also been derived in the form of sixth-order determinantal expression, which is found in full agreement with the corresponding result of inviscid liquid/elastic solid interface. Numerical computations have been performed for a specific model. The dispersion curves and attenuation of the existed waves in micropolar fluid have been computed and depicted graphically. The variations of various amplitudes and energy ratios are also shown against the angle of incidence. Results of some earlier workers have been deduced from the present formulation.  相似文献   

6.
We describe a modeling technique for dynamic contact angle between a phase interface and a solid wall using a generalized Navier boundary condition in the context of a front-tracking-based multiphase method. The contact line motion is determined by the generalized Navier slip boundary condition in order to eliminate the infinite shear stress at the contact line. Applying this slip boundary condition only to the interface movement with various slip ratios shows good agreement with experimental results compared to allowing full fluid slip along the solid surface. The interface slip model performs well on grid convergence tests using both the slip ratio and slip length models. A detailed energy analysis was performed to identify changes in kinetic, surface, and potential energies as well as viscous and contact line dissipation with time. A friction coefficient for contact line dissipation was obtained based on the other computed energy terms. Each energy term and the friction coefficient were compared for different grid resolutions. The effect of varying the slip ratio as well as the contact angle distribution versus contact line speed was analyzed. The behavior of drop impact on a solid wall with different advancing and receding angles was investigated. Finally, the proposed dynamic contact model was extended to three dimensions for large-scale parallel calculations. The impact of a droplet on a solid cylinder was simulated to demonstrate the capabilities of the proposing formulation on general solid structures. Widely different contact angles were tested and showed distinctive characteristic behavior clearly.  相似文献   

7.
Anuar Ishak 《Meccanica》2010,45(3):367-373
In the present paper, we study the effects of radiation on the thermal boundary layer flow induced by a linearly stretching sheet immersed in an incompressible micropolar fluid with constant surface temperature. Similarity transformation is employed to transform the governing partial differential equations into ordinary ones, which are then solved numerically using the Runge-Kutta-Fehlberg method. Results for the local Nusselt number as well as the temperature profiles are presented for different values of the governing parameters. It is found that the heat transfer rate at the surface decreases in the presence of radiation. Comparison with known results for certain particular cases is excellent.  相似文献   

8.
In this article, an ALE finite element method to simulate the partial melting of a workpiece of metal is presented. The model includes the heat transport in both the solid and liquid part, fluid flow in the liquid phase by the Navier–Stokes equations, tracking of the melt interface solid/liquid by the Stefan condition, treatment of the capillary boundary accounting for surface tension effects and a radiative boundary condition. We show that an accurate treatment of the moving boundaries is crucial to resolve their respective influences on the flow field and thus on the overall energy transport correctly. This is achieved by a mesh‐moving method, which explicitly tracks the phase boundary and makes it possible to use a sharp interface model without singularities in the boundary conditions at the triple junction. A numerical example describing the welding of a thin‐steel wire end by a laser, where all aforementioned effects have to be taken into account, proves the effectiveness of the approach.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
In the framework of strain gradient plasticity, a solid body with boundary surface playing the role of a dissipative boundary layer endowed with surface tension and surface energy, is addressed. Using the so-called residual-based gradient plasticity theory, the state equations and the higher order boundary conditions are derived quite naturally for both the bulk material and the boundary layer. A phenomenological constitutive model is envisioned, in which the bulk material and the boundary layer obey (rate independent associative) coupled plasticity evolution laws, with kinematic hardening laws of differential nature for the bulk material, but of nondifferential nature for the layer. A combined global maximum dissipation principle is shown to hold. The higher order boundary conditions are discussed in details and categorized in relation to some peculiar features of the boundary surface, and their basic role in the coupling of the bulk/layer plasticity evolution laws is pointed out. The case of an internal interface is also studied. An illustrative example relating to a shear model exhibiting energetic size effects is presented. The theory provides a unified view on gradient plasticity with interfacial energy effects.  相似文献   

10.
This paper presents a computational model for free surface flows interacting with moving rigid bodies. The model is based on the SPH method, which is a popular meshfree, Lagrangian particle method and can naturally treat large flow deformation and moving features without any interface/surface capture or tracking algorithm. Fluid particles are used to model the free surface flows which are governed by Navier–Stokes equations, and solid particles are used to model the dynamic movement (translation and rotation) of moving rigid objects. The interaction of the neighboring fluid and solid particles renders the fluid–solid interaction and the non‐slip solid boundary conditions. The SPH method is improved with corrections on the SPH kernel and kernel gradients, enhancement of solid boundary condition, and implementation of Reynolds‐averaged Navier–Stokes turbulence model. Three numerical examples including the water exit of a cylinder, the sinking of a submerged cylinder and the complicated motion of an elliptical cylinder near free surface are provided. The obtained numerical results show good agreement with results from other sources and clearly demonstrate the effectiveness of the presented meshfree particle model in modeling free surface flows with moving objects. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
The paper offers a theoretical approach to a prediction of residue formation inherent to melting and subsequent solidification of micro layers of molten aluminum alloys. The residue formation follows a reactive flow of a portion of the melt that is removed by a surface tension action. The residue portion solidifies in situ. The phenomenon studied is associated with materials’ processing during controlled atmosphere brazing of aluminum. The model assumes that diffusion of Silicon, present in an Al+Si clad of a brazing sheet, has a twofold role. First, a solid state Si diffusion prior to melting and across the clad–core interface of a composite brazing sheet takes place and modifies alloys’ composition on both sides of the interface. Subsequently, Si diffusion within clad controls the melting process. Both processes are essential for clad residue formation. The approach advocated in this paper leads to a prediction of the residue formation through a modeling of the non-equilibrium diffusion-controlled melting. A heuristic interpretation of physical mechanisms was discussed and a related mathematical model devised. The model was solved numerically in terms of Si concentration distributions for a moving boundary problem and corroborated with empirical data. Empirical data were gathered using an experimental controlled atmosphere brazing facility. The results of the modeling and their corroboration with the experimental data indicate a strong dependence of residue formations on the pre-melting state of the clad, in particular on the grain size within Al-clad matrix. A good agreement between numerically predicted residue mass and experimental findings is documented in detail.  相似文献   

12.
Using the theory of micropolar fluids developed by Eringen, the transverse curvature effects on axisymmetric free convection boundary layer flow of a micropolar fluid past slender vertical cones are investigated. The case of constant surface heat flux is considered in this paper. Using perturbation techniques, the governing equations for momentum, angular momentum and energy have been solved numerically. Graphical representations for the velocity, angular velocity and thermal functions are presented for various physical and fluid property parameters.  相似文献   

13.
The present study is concerned with the wave propagation in an electro-microelastic solid. The reflection phenomenon of plane elastic waves from a stress free plane boundary of an electro-microelastic solid half-space is studied. The condition and the range of frequency for the existence of elastic waves in an infinite electro-microelastic body are investigated. The constitutive relations and the field equations for an electro-microelastic solid are stemmed from the Eringen’s theory of microstretch elasticity with electromagnetic interactions. Amplitude ratios and energy ratios of various reflected waves are presented when an elastic wave is made incident obliquely at the stress free plane boundary of an electro-microelastic solid half-space. It has been verified that there is no dissipation of energy at the boundary surface during reflection. Numerical computations are performed for a specific model to calculate the phase speeds, amplitude ratios and energy ratios, and the results obtained are depicted graphically. The effect of elastic parameter corresponding to micro-stretch is noticed on reflection coefficients, in particular. Results of Parfitt and Eringen [Parfitt, V.R., Eringen, A.C., 1969. Reflection of plane waves from a flat boundary of a micropolar elastic half-space. J. Acoust. Soc. Am. 45, 1258–1272] have also been reduced as a special case from the present formulation.  相似文献   

14.
A novel size-dependent model is developed herein to study the bending behavior of beam-type micro/nano-structures considering combined effects of nonlocality and micro-rotational degrees of freedom. To accomplish this aim, the micropolar theory is combined with the nonlocal elasticity. To consider the nonlocality, both integral(original)and differential formulations of Eringen's nonlocal theory are considered. The beams are considered to be Timoshenko-type, and the governing equations are derived in the variational form through Hamilton's principle. The relations are written in an appropriate matrix-vector representation that can be readily utilized in numerical approaches. A finite element(FE) approach is also proposed for the solution procedure. Parametric studies are conducted to show the simultaneous nonlocal and micropolar effects on the bending response of small-scale beams under different boundary conditions.  相似文献   

15.
The object of this paper is the study of the moving boundary problem modeling the growth of a spherical solid inclusion in an infinite solid matrix. The displacement in bulk is assumed infinitesimal, while the phases are modeled as isotropic elastic bodies, and the interface structure is described by a constant surface tension. Existence of solutions is proved, and their asymptotic behavior in time is studied, with particular attention to the competition between surface tension and bulk deformation.  相似文献   

16.
IntroductionSomeauthorsstudiedthecoupledfieldproblemsformicropolarcontinua .Especially ,W .Nowackipublishedaseriesofabout 4 0scientificpapersdealingwiththemicropolarthermoelasticityaswellastheproblemsofdistortion ,thermodiffusion ,thermopiezoelectricityandm…  相似文献   

17.
In view of size effects in cellular solids, we critically compare the analytical results of generalized continuum theories with the computational results of discrete models. Representatives are studied from two classes of generalized continuum theories: the strain divergence theory from the class of higher-grade continua and the micropolar theory from the class of higher-order continua. In the former, the divergence of strain is proposed as an additional deformation measure, while in the latter the microrotation gradients act as the source for extra internal energy. We analytically solve a range of basic boundary value problems (simple shear, pure bending and the strain concentration around a hole) and compare the results with discrete, numerical calculations that are based on a Voronoi representation of the cellular microstructure. By comparing both the local deformation fields and the overall elastic response, we critically assess the capabilities of both theories in capturing size effects in cellular solids.  相似文献   

18.
M. Z. Salleh  R. Nazar  I. Pop 《Meccanica》2012,47(5):1261-1269
In this paper, the problem of free convection boundary layer flow on a solid sphere in a micropolar fluid with Newtonian heating, in which the heat transfer from the surface is proportional to the local surface temperature, is considered. The transformed boundary layer equations in the form of partial differential equations are solved numerically using an implicit finite-difference scheme. Numerical solutions are obtained for the local wall temperature, the local skin friction coefficient, as well as the velocity, angular velocity and temperature profiles. The features of the flow and heat transfer characteristics for different values of the material or micropolar parameter K, the Prandtl number Pr and the conjugate parameter γ are analyzed and discussed.  相似文献   

19.
给出了磁场、热场和弹性场多场耦合作用下微极广义热弹性固体的一般控制方程.该方 程既包含了磁场、热场和弹性场的耦合作用,又在其广义热传导方程中涵盖了耦合热弹理论 (C-D)及其5类推广(L-S理论,G-L理论,G-N(II,III)理论和C-T理论).运用该微极广义磁热 弹性控制方程,研究了在定常磁场作用下, 具有均匀初始温度的两理想接触微极弹性介质平面分界面上磁热弹性波的反射和折射现象.给出了分别在缺少磁场、热场作用或不同广义热传 导理论下反射或折射热波、纵向位移波、耦合横向和微旋转波与入射纵向位移波的振幅比随 入射角变化的关系曲线.对缺少磁、热和微极性以及热松弛时间时对应的反射、折射系数进 行了对比.结果表明磁、热和微极性以及热松弛时间对振幅比均有不同程度的影 响,与磁、热和微极性一样,热松弛时间对不同类型波的影响能力差别明显,但对同 一类型的反射波和折射波的影响相似.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号