首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We present a local convergence analysis of Gauss-Newton method for solving nonlinear least square problems. Using more precise majorant conditions than in earlier studies such as Chen (Comput Optim Appl 40:97–118, 2008), Chen and Li (Appl Math Comput 170:686–705, 2005), Chen and Li (Appl Math Comput 324:1381–1394, 2006), Ferreira (J Comput Appl Math 235:1515–1522, 2011), Ferreira and Gonçalves (Comput Optim Appl 48:1–21, 2011), Ferreira and Gonçalves (J Complex 27(1):111–125, 2011), Li et al. (J Complex 26:268–295, 2010), Li et al. (Comput Optim Appl 47:1057–1067, 2004), Proinov (J Complex 25:38–62, 2009), Ewing, Gross, Martin (eds.) (The merging of disciplines: new directions in pure, applied and computational mathematics 185–196, 1986), Traup (Iterative methods for the solution of equations, 1964), Wang (J Numer Anal 20:123–134, 2000), we provide a larger radius of convergence; tighter error estimates on the distances involved and a clearer relationship between the majorant function and the associated least squares problem. Moreover, these advantages are obtained under the same computational cost.  相似文献   

2.
We present a local convergence analysis of a two-point four parameter Jarratt-like method of high convergence order in order to approximate a locally unique solution of a nonlinear equation. In contrast to earlier studies such us (Amat et al. Aequat. Math. 69(3), 212–223 2015; Amat et al. J. Math. Anal. Appl. 366(3), 24–32 2010; Behl, R. 2013; Bruns and Bailey Chem. Eng. Sci. 32, 257–264 1977; Candela and Marquina. Computing 44, 169–184 1990; Candela and Marquina. Computing 45(4), 355–367 1990; Chun. Appl. Math. Comput. 190(2), 1432–1437 2007; Cordero and Torregrosa. Appl. Math. Comput. 190, 686–698 2007; Deghan. Comput. Appl Math. 29(1), 19–30 2010; Deghan. Comput. Math. Math. Phys. 51(4), 513–519 2011; Deghan and Masoud. Eng. Comput. 29(4), 356–365 15; Cordero and Torregrosa. Appl. Math. Comput. 190, 686–698 2012; Deghan and Masoud. Eng. Comput. 29(4), 356–365 2012; Ezquerro and Hernández. Appl. Math. Optim. 41(2), 227–236 2000; Ezquerro and Hernández. BIT Numer. Math. 49, 325–342 2009; Ezquerro and Hernández. J. Math. Anal. Appl. 303, 591–601 2005; Gutiérrez and Hernández. Comput. Math. Appl. 36(7), 1–8 1998; Ganesh and Joshi. IMA J. Numer. Anal. 11, 21–31 1991; González-Crespo et al. Expert Syst. Appl. 40(18), 7381–7390 2013; Hernández. Comput. Math. Appl. 41(3-4), 433–455 2001; Hernández and Salanova. Southwest J. Pure Appl. Math. 1, 29–40 1999; Jarratt. Math. Comput. 20(95), 434–437 1966; Kou and Li. Appl. Math. Comput. 189, 1816–1821 2007; Kou and Wang. Numer. Algor. 60, 369–390 2012; Lorenzo et al. Int. J. Interact. Multimed. Artif. Intell. 1(3), 60–66 2010; Magreñán. Appl. Math. Comput. 233, 29–38 2014; Magreñán. Appl. Math. Comput. 248, 215–224 2014; Parhi and Gupta. J. Comput. Appl. Math. 206(2), 873–887 2007; Rall 1979; Ren et al. Numer. Algor. 52(4), 585–603 2009; Rheinboldt Pol. Acad. Sci. Banach Ctr. Publ. 3, 129–142 1978; Sicilia et al. J. Comput. Appl. Math. 291, 468–477 2016; Traub 1964; Wang et al. Numer. Algor. 57, 441–456 2011) using hypotheses up to the fifth derivative, our sufficient convergence conditions involve only hypotheses on the first Fréchet-derivative of the operator involved. The dynamics of the family for choices of the parameters such that it is optimal is also shown. Numerical examples are also provided in this study  相似文献   

3.
The famous for its simplicity and clarity Newton–Kantorovich hypothesis of Newton’s method has been used for a long time as the sufficient convergence condition for solving nonlinear equations. Recently, in the elegant study by Hu et al. (J Comput Appl Math 219:110–122, 2008), a Kantorovich-type convergence analysis for the Gauss–Newton method (GNM) was given improving earlier results by Häubler (Numer Math 48:119–125, 1986), and extending some results by Argyros (Adv Nonlinear Var Inequal 8:93–99, 2005, 2007) to hold for systems of equations with constant rank derivatives. In this study, we use our new idea of recurrent functions to extend the applicability of (GNM) by replacing existing conditions by weaker ones. Finally, we provide numerical examples to solve equations in cases not covered before (Häubler, Numer Math 48:119–125, 1986; Hu et al., J Comput Appl Math 219:110–122, 2008; Kontorovich and Akilov 2004).  相似文献   

4.
In this paper we provide a simple proof of the existence coupled fixed point theorem in complete cone metric spaces due to Sabetghadam et al. (Fixed Point Theory Appl 2009:8, 2009) and due to Olatinwo (Annali Dell’Universita’Di Ferrara 57:173–180, 2011). In particular we prove that these results are spacial cases of Rezapour and Hamlbarani’s theorems (J Math Anal Appl 345(2):719–724, 2008).  相似文献   

5.
In this paper we will continue the analysis undertaken in Bagarello et al. (Rend Circ Mat Palermo (2) 55:21–28, 2006), Bongiorno et al. (Rocky Mt J Math 40(6):1745–1777, 2010), Triolo (Rend Circ Mat Palermo (2) 60(3):409–416, 2011) on the general problem of extending the noncommutative integration in a *-algebra of measurable operators. As in Aiena et al. (Filomat 28(2):263–273, 2014), Bagarello (Stud Math 172(3):289–305, 2006) and Bagarello et al. (Rend Circ Mat Palermo (2) 55:21–28, 2006), the main problem is to represent different types of partial *-algebras into a *-algebra of measurable operators in Segal’s sense, provided that these partial *-algebras posses a sufficient family of positive linear functionals (states) (Fragoulopoulou et al., J Math Anal Appl 388(2):1180–1193, 2012; Trapani and Triolo, Stud Math 184(2):133–148, 2008; Trapani and Triolo, Rend Circolo Mat Palermo 59:295–302, 2010; La Russa and Triolo, J Oper Theory, 69:2, 2013; Triolo, J Pure Appl Math, 43(6):601–617, 2012). In this paper, a new condition is given in an attempt to provide a extension of the non commutative integration.  相似文献   

6.
7.
Motivated by a recent work of Chen and Zhu (Commun Math Stat 1:369–385. 2013), we establish a Trudinger–Moser inequality on a compact Riemannian surface without boundary. The proof is based on blow-up analysis together with Carleson–Chang’s result (Bull Sci Math 110:113–127. 1986). This inequality is different from the classical one, which is due to Fontana (Comment Math Helv 68:415–454. 1993), since the Gaussian curvature is involved. As an application, we improve Chen–Zhu’s result as follows: a modified Liouville energy of conformal Riemannian metric has a uniform lower bound, provided that the Euler characteristic is nonzero and the volume of the conformal surface has a uniform positive lower bound.  相似文献   

8.
The goal of this paper is to point out that the results obtained in the recent papers (Chen and Song in Nonlinear Anal 72:1895–1901, 2010; Chu in J Math Anal Appl 327:1041–1045, 2007; Chu et al. in Nonlinear Anal 59:1001–1011, 2004a, J. Math Anal Appl 289:666–672, 2004b) can be seriously strengthened in the sense that we can significantly relax the assumptions of the main results so that we still get the same conclusions. In order to do this first, we prove that for \(n \ge 3\) any transformation which preserves the n-norm of any n vectors is automatically plus-minus linear. This will give a re-proof of the well-known Mazur–Ulam-type result that every n-isometry is automatically affine (\(n \ge 2\)) which was proven in several papers, e.g. in Chu et al. (Nonlinear Anal 70:1068–1074, 2009). Second, following the work of Rassias and ?emrl (Proc Am Math Soc 118:919–925, 1993), we provide the solution of a natural Aleksandrov-type problem in n-normed spaces, namely, we show that every surjective transformation which preserves the unit n-distance in both directions (\(n\ge 2\)) is automatically an n-isometry.  相似文献   

9.
In this paper, we study the dependence structure of some bivariate distribution functions based on dependence measures of Kochar and Gupta (Biometrika 74(3):664–666, 1987) and Shetty and Pandit (Stat Methods Appl 12:5–17, 2003) and then compare these measures with Spearman’s rho and Kendall’s tau. Moreover, the empirical power of the class of distribution-free tests introduced by Kochar and Gupta (1987) and Shetty and Pandit (2003) is computed based on exact and asymptotic distribution of U-statistics. Our results are obtained from simulation work in some continuous bivariate distributions for the sample of sizes \(n=6,8,15,20\) and 50. Also, we apply some examples to illustrate the results. Finally, we compare the common estimators of dependence parameter based on empirical MSE.  相似文献   

10.
We prove a sharp pinching estimate for immersed mean convex solutions of mean curvature flow which unifies and improves all previously known pinching estimates, including the umbilic estimate of Huisken (J Differ Geom 20(1):237–266, 1984), the convexity estimates of Huisken–Sinestrari (Acta Math 183(1):45–70, 1999) and the cylindrical estimate of Huisken–Sinestrari (Invent Math 175(1):137–221, 2009; see also Andrews and Langford in Anal PDE 7(5):1091–1107, 2014; Huisken and Sinestrari in J Differ Geom 101(2):267–287, 2015). Namely, we show that the curvature of the solution pinches onto the convex cone generated by the curvatures of any shrinking cylinder solutions admitted by the initial data. For example, if the initial data is \((m+1)\)-convex, then the curvature of the solution pinches onto the convex hull of the curvatures of the shrinking cylinders \(\mathbb {R}^m\times S^{n-m}_{\sqrt{2(n-m)(1-t)}}\), \(t<1\). In particular, this yields a sharp estimate for the largest principal curvature, which we use to obtain a new proof of a sharp estimate for the inscribed curvature for embedded solutions (Brendle in Invent Math 202(1):217–237, 2015; Haslhofer and Kleiner in Int Math Res Not 15:6558–6561, 2015; Langford in Proc Am Math Soc 143(12):5395–5398, 2015). Making use of a recent idea of Huisken–Sinestrari (2015), we then obtain a series of sharp estimates for ancient solutions. In particular, we obtain a convexity estimate for ancient solutions which allows us to strengthen recent characterizations of the shrinking sphere due to Huisken–Sinestrari (2015) and Haslhofer–Hershkovits (Commun Anal Geom 24(3):593–604, 2016).  相似文献   

11.
The efficient determination of tight lower bounds in a branch-and-bound algorithm is crucial for the global optimization of models spanning numerous applications and fields. The global optimization method \(\alpha \)-branch-and-bound (\(\alpha \)BB, Adjiman et al. in Comput Chem Eng 22(9):1159–1179, 1998b, Comput Chem Eng 22(9):1137–1158, 1998a; Adjiman and Floudas in J Global Optim 9(1):23–40, 1996; Androulakis et al. J Global Optim 7(4):337–363, 1995; Floudas in Deterministic Global Optimization: Theory, Methods and Applications, vol. 37. Springer, Berlin, 2000; Maranas and Floudas in J Chem Phys 97(10):7667–7678, 1992, J Chem Phys 100(2):1247–1261, 1994a, J Global Optim 4(2):135–170, 1994), guarantees a global optimum with \(\epsilon \)-convergence for any \(\mathcal {C}^2\)-continuous function within a finite number of iterations via fathoming nodes of a branch-and-bound tree. We explored the performance of the \(\alpha \)BB method and a number of competing methods designed to provide tight, convex underestimators, including the piecewise (Meyer and Floudas in J Global Optim 32(2):221–258, 2005), generalized (Akrotirianakis and Floudas in J Global Optim 30(4):367–390, 2004a, J Global Optim 29(3):249–264, 2004b), and nondiagonal (Skjäl et al. in J Optim Theory Appl 154(2):462–490, 2012) \(\alpha \)BB methods, the Brauer and Rohn+E (Skjäl et al. in J Global Optim 58(3):411–427, 2014) \(\alpha \)BB methods, and the moment method (Lasserre and Thanh in J Global Optim 56(1):1–25, 2013). Using a test suite of 40 multivariate, box-constrained, nonconvex functions, the methods were compared based on the tightness of generated underestimators and the efficiency of convergence of a branch-and-bound global optimization algorithm.  相似文献   

12.
We present a unified framework to identify spectra of Jacobi matrices. We give applications of the long-standing problem of Chihara (Mt J Math 21(1):121–137, 1991, J Comput Appl Math 153(1–2):535–536, 2003) concerning one-quarter class of orthogonal polynomials, to the conjecture posed by Roehner and Valent (SIAM J Appl Math 42(5):1020–1046, 1982) concerning continuous spectra of generators of birth and death processes, and to spectral properties of operators studied by Janas and Moszyńki (Integral Equ Oper Theory 43(4):397–416, 2002) and Pedersen (Proc Am Math Soc 130(8):2369–2376, 2002).  相似文献   

13.
Consider a critical branching random walk on the real line. In a recent paper, Aïdékon (2011) developed a powerful method to obtain the convergence in law of its minimum after a log-factor translation. By an adaptation of this method, we show that the point process formed by the branching random walk seen from the minimum converges in law to a decorated Poisson point process. This result, confirming a conjecture of Brunet and Derrida (J Stat Phys 143:420–446, 2011), can be viewed as a discrete analog of the corresponding results for the branching Brownian motion, previously established by Arguin et al. (2010, 2011) and Aïdékon et al. (2011).  相似文献   

14.
Let (Xd) be a metric space, Y be a nonempty subset of X, and let \(T:Y \rightarrow P(X)\) be a non-self multivalued mapping. In this paper, by a new technique we study the fixed point theory of multivalued mappings under the assumption of the existence of a bounded sequence \((x_n)_n\) in Y such that \(T^nx_n\subseteq Y,\) for each \(n \in \mathbb {N}\). Our main result generalizes fixed point theorems due to Matkowski (Diss. Math. 127, 1975), W?grzyk (Diss. Math. (Rozprawy Mat.) 201, 1982), Reich and Zaslavski (Fixed Point Theory 8:303–307, 2007), Petru?el et al. (Set-Valued Var. Anal. 23:223–237, 2015) and provides a solution to the problems posed in Petru?el et al. (Set-Valued Var. Anal. 23:223–237, 2015) and Rus and ?erban (Miskolc Math. Notes 17:1021–1031, 2016).  相似文献   

15.
Smale’s 17th problem asks for an algorithm which finds an approximate zero of polynomial systems in average polynomial time (see Smale in Mathematical problems for the next century, American Mathematical Society, Providence, 2000). The main progress on Smale’s problem is Beltrán and Pardo (Found Comput Math 11(1):95–129, 2011) and Bürgisser and Cucker (Ann Math 174(3):1785–1836, 2011). In this paper, we will improve on both approaches and prove an interesting intermediate result on the average value of the condition number. Our main results are Theorem 1 on the complexity of a randomized algorithm which improves the result of Beltrán and Pardo (2011), Theorem 2 on the average of the condition number of polynomial systems which improves the estimate found in Bürgisser and Cucker (2011), and Theorem 3 on the complexity of finding a single zero of polynomial systems. This last theorem is similar to the main result of Bürgisser and Cucker (2011) but relies only on homotopy methods, thus removing the need for the elimination theory methods used in Bürgisser and Cucker (2011). We build on methods developed in Armentano et al. (2014).  相似文献   

16.
Our interest in this paper is to explore limit theorems for various geometric functionals of excursion sets of isotropic Gaussian random fields. In the past, asymptotics of nonlinear functionals of Gaussian random fields have been studied [see Berman (Sojourns and extremes of stochastic processes, Wadsworth & Brooks, Monterey, 1991), Kratz and León (Extremes 3(1):57–86, 2000), Kratz and León (J Theor Probab 14(3):639–672, 2001), Meshenmoser and Shashkin (Stat Probab Lett 81(6):642–646, 2011), Pham (Stoch Proc Appl 123(6):2158–2174, 2013), Spodarev (Chapter in modern stochastics and applications, volume 90 of the series Springer optimization and its applications, pp 221–241, 2013) for a sample of works in such settings], the most recent addition being (Adler and Naitzat in Stoch Proc Appl 2016; Estrade and León in Ann Probab 2016) where a central limit theorem (CLT) for Euler integral and Euler–Poincaré characteristic, respectively, of the excursions set of a Gaussian random field is proven under some conditions. In this paper, we obtain a CLT for some global geometric functionals, called the Lipschitz–Killing curvatures of excursion sets of Gaussian random fields, in an appropriate setting.  相似文献   

17.
In this paper we consider a hyperbolic Keller-Segel system with a logistic source in two dimension. We show the system has a global smooth solution upon small perturbation around a constant equilibrium and the solution satisfies a dissipative energy inequality. To do this we find a convex entropy functional and a compensating matrix, which transforms the partially dissipative system into a uniformly dissipative one. Those two ingredients were crucial for the study of a partially dissipative hyperbolic system (Hanouzet and Natalini in Arch. Ration. Mech. Anal. 169(2):89–117, 2003; Kawashima in Ph.D. Thesis, Kyoto University, 1983; Yong in Arch. Ration. Mech. Anal. 172(2):247–266, 2004).  相似文献   

18.
In Béziau (Log Log Philos 15:99–111, 2006) a logic \(\mathbf {Z}\) was defined with the help of the modal logic \(\mathbf {S5}\). In it, the negation operator is understood as meaning ‘it is not necessary that’. The strong soundness–completeness result for \(\mathbf {Z}\) with respect to a version of Kripke semantics was also given there. Following the formulation of \(\mathbf {Z}\) we can talk about \(\mathbf {Z}\)-like logics or Beziau-style logics if we consider other modal logics instead of \(\mathbf {S5}\)—such a possibility has been mentioned in [1]. The correspondence result between modal logics and respective Beziau-style logics has been generalised for the case of normal logics naturally leading to soundness–completeness results [see Marcos (Log Anal 48(189–192):279–300, 2005) and Mruczek-Nasieniewska and Nasieniewski (Bull Sect Log 34(4):229–248, 2005)]. In Mruczek-Nasieniewska and Nasieniewski (Bull Sect Log 37(3–4):185–196, 2008), (Bull Sect Log 38(3–4):189–203, 2009) some partial results for non-normal cases are given. In the present paper we try to give similar but more general correspondence results for the non-normal-worlds case. To achieve this aim we have to enrich original Beziau’s language with an additional negation operator understood as ‘it is necessary that not’.  相似文献   

19.
The purpose of this paper is to show well-posedness results for Dirichlet problems for the Stokes and Navier–Stokes systems with \(L^{\infty }\)-variable coefficients in \(L^2\)-based Sobolev spaces in Lipschitz domains on compact Riemannian manifolds. First, we refer to the Dirichlet problem for the nonsmooth coefficient Stokes system on Lipschitz domains in compact Riemannian manifolds and show its well-posedness by employing a variational approach that reduces the boundary value problem of Dirichlet type to a variational problem defined in terms of two bilinear continuous forms, one of them satisfying a coercivity condition and another one the inf-sup condition. We show also the equivalence between some transmission problems for the nonsmooth coefficient Stokes system in complementary Lipschitz domains on compact Riemannian manifolds and their mixed variational counterparts, and then their well-posedness in \(L^2\)-based Sobolev spaces by using the remarkable Nec?as–Babus?ka–Brezzi technique (see Babus?ka in Numer Math 20:179–192, 1973; Brezzi in RAIRO Anal Numer R2:129–151, 1974; Nec?as in Rev Roum Math Pures Appl 9:47–69, 1964). As a consequence of these well-posedness results we define the layer potential operators for the nonsmooth coefficient Stokes system on Lipschitz surfaces in compact Riemannian manifolds, and provide their main mapping properties. These properties are used to construct explicitly the solution of the Dirichlet problem for the Stokes system. Further, we combine the well-posedness of the Dirichlet problem for the nonsmooth coefficient Stokes system with a fixed point theorem to show the existence of a weak solution to the Dirichlet problem for the nonsmooth variable coefficient Navier–Stokes system in \(L^2\)-based Sobolev spaces in Lipschitz domains on compact Riemannian manifolds. The well developed potential theory for the smooth coefficient Stokes system on compact Riemannian manifolds (cf. Dindos? and Mitrea in Arch Ration Mech Anal 174:1–47, 2004; Mitrea and Taylor in Math Ann 321:955–987, 2001) is also discussed in the context of the potential theory developed in this paper.  相似文献   

20.
This note continues our previous work on special secant defective (specifically, conic connected and local quadratic entry locus) and dual defective manifolds. These are now well understood, except for the prime Fano ones. Here we add a few remarks on this case, completing the results in our papers (Russo in Math Ann 344:597–617, 2009; Ionescu and Russo in Compos Math 144:949–962, 2008; Ionescu and Russo in J Reine Angew Math 644:145–157, 2010; Ionescu and Russo in Am J Math 135:349–360, 2013; Ionescu and Russo in Math Res Lett 21:1137–1154, 2014); see also the recent book (Russo, On the Geometry of Some Special Projective Varieties, Lecture Notes of the Unione Matematica Italiana, Springer, 2016).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号