首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We classify noncomplete prime valency graphs satisfying the property that their automorphism group is transitive on both the set of arcs and the set of 2‐geodesics. We prove that either Γ is 2‐arc transitive or the valency p satisfies , and for each such prime there is a unique graph with this property: it is a nonbipartite antipodal double cover of the complete graph with automorphism group and diameter 3.  相似文献   

2.
Unitary graphs are arc‐transitive graphs with vertices the flags of Hermitian unitals and edges defined by certain elements of the underlying finite fields. They played a significant role in a recent classification of a class of arc‐transitive graphs that admit an automorphism group acting imprimitively on the vertices. In this article, we prove that all unitary graphs are connected of diameter two and girth three. Based on this, we obtain, for any prime power , a lower bound of order on the maximum number of vertices in an arc‐transitive graph of degree and diameter two.  相似文献   

3.
《Journal of Graph Theory》2018,87(3):285-304
We initiate a general study of what we call orientation completion problems. For a fixed class of oriented graphs, the orientation completion problem asks whether a given partially oriented graph P can be completed to an oriented graph in by orienting the (nonoriented) edges in P. Orientation completion problems commonly generalize several existing problems including recognition of certain classes of graphs and digraphs as well as extending representations of certain geometrically representable graphs. We study orientation completion problems for various classes of oriented graphs, including k‐arc‐strong oriented graphs, k‐strong oriented graphs, quasi‐transitive‐oriented graphs, local tournaments, acyclic local tournaments, locally transitive tournaments, locally transitive local tournaments, in‐tournaments, and oriented graphs that have directed cycle factors. We show that the orientation completion problem for each of these classes is either polynomial time solvable or NP‐complete. We also show that some of the NP‐complete problems become polynomial time solvable when the input‐oriented graphs satisfy certain extra conditions. Our results imply that the representation extension problems for proper interval graphs and for proper circular arc graphs are polynomial time solvable. The latter generalizes a previous result.  相似文献   

4.
《Journal of Graph Theory》2018,87(4):581-586
Jones, Nedela, and Škoviera (2008) showed that a complete bipartite graph has a unique orientably regular embedding if and only if . In this article, we extend this result by proving that a complete bipartite graph has a unique orientably edge‐transitive embedding if and only if .  相似文献   

5.
《Journal of Graph Theory》2018,88(1):101-109
A graph is 1‐planar if it can be drawn in the plane such that each edge is crossed at most once. A graph, together with a 1‐planar drawing is called 1‐plane. A graph is maximal 1‐planar (1‐plane), if we cannot add any missing edge so that the resulting graph is still 1‐planar (1‐plane). Brandenburg et al. showed that there are maximal 1‐planar graphs with only edges and maximal 1‐plane graphs with only edges. On the other hand, they showed that a maximal 1‐planar graph has at least edges, and a maximal 1‐plane graph has at least edges. We improve both lower bounds to .  相似文献   

6.
If T is an n‐vertex tournament with a given number of 3‐cycles, what can be said about the number of its 4‐cycles? The most interesting range of this problem is where T is assumed to have cyclic triples for some and we seek to minimize the number of 4‐cycles. We conjecture that the (asymptotic) minimizing T is a random blow‐up of a constant‐sized transitive tournament. Using the method of flag algebras, we derive a lower bound that almost matches the conjectured value. We are able to answer the easier problem of maximizing the number of 4‐cycles. These questions can be equivalently stated in terms of transitive subtournaments. Namely, given the number of transitive triples in T, how many transitive quadruples can it have? As far as we know, this is the first study of inducibility in tournaments.  相似文献   

7.
《Journal of Graph Theory》2018,88(1):192-210
A tournament is called locally transitive if the outneighborhood and the inneighborhood of every vertex are transitive. Equivalently, a tournament is locally transitive if it avoids the tournaments W4 and L4, which are the only tournaments up to isomorphism on four vertices containing a unique 3‐cycle. On the other hand, a sequence of tournaments  with  is called almost balanced if all but  vertices of  have outdegree . In the same spirit of quasi‐random properties, we present several characterizations of tournament sequences that are both almost balanced and asymptotically locally transitive in the sense that the density of W4 and L4 in  goes to zero as n goes to infinity.  相似文献   

8.
A noncomplete graph Γ is said to be (G, 2)‐distance transitive if G is a subgroup of the automorphism group of Γ that is transitive on the vertex set of Γ, and for any vertex u of Γ, the stabilizer is transitive on the sets of vertices at distances 1 and 2 from u. This article investigates the family of (G, 2)‐distance transitive graphs that are not (G, 2)‐arc transitive. Our main result is the classification of such graphs of valency not greater than 5. We also prove several results about (G, 2)‐distance transitive, but not (G, 2)‐arc transitive graphs of girth 4.  相似文献   

9.
A graph is 1‐planar if it can be drawn on the plane so that each edge is crossed by no more than one other edge (and any pair of crossing edges cross only once). A non‐1‐planar graph G is minimal if the graph is 1‐planar for every edge e of G. We construct two infinite families of minimal non‐1‐planar graphs and show that for every integer , there are at least nonisomorphic minimal non‐1‐planar graphs of order n. It is also proved that testing 1‐planarity is NP‐complete.  相似文献   

10.
Recently, Borodin, Kostochka, and Yancey (Discrete Math 313(22) (2013), 2638–2649) showed that the vertices of each planar graph of girth at least 7 can be 2‐colored so that each color class induces a subgraph of a matching. We prove that any planar graph of girth at least 6 admits a vertex coloring in colors such that each monochromatic component is a path of length at most 14. Moreover, we show a list version of this result. On the other hand, for each positive integer , we construct a planar graph of girth 4 such that in any coloring of vertices in colors there is a monochromatic path of length at least t. It remains open whether each planar graph of girth 5 admits a 2‐coloring with no long monochromatic paths.  相似文献   

11.
《Journal of Graph Theory》2018,87(4):399-429
We consider an extremal problem motivated by a article of Balogh [J. Balogh, A remark on the number of edge colorings of graphs, European Journal of Combinatorics 27, 2006, 565–573], who considered edge‐colorings of graphs avoiding fixed subgraphs with a prescribed coloring. More precisely, given , we look for n‐vertex graphs that admit the maximum number of r‐edge‐colorings such that at most colors appear in edges incident with each vertex, that is, r‐edge‐colorings avoiding rainbow‐colored stars with t edges. For large n, we show that, with the exception of the case , the complete graph is always the unique extremal graph. We also consider generalizations of this problem.  相似文献   

12.
Partial cubes are graphs isometrically embeddable into hypercubes. In this article, it is proved that every cubic, vertex‐transitive partial cube is isomorphic to one of the following graphs: , for , the generalized Petersen graph G (10, 3), the cubic permutahedron, the truncated cuboctahedron, or the truncated icosidodecahedron. This classification is a generalization of results of Bre?ar et  al. (Eur J Combin 25 (2004), 55–64) on cubic mirror graphs; it includes all cubic, distance‐regular partial cubes (P. M. Weichsel, Discrete Math 109 (1992), 297–306), and presents a contribution to the classification of all cubic partial cubes.  相似文献   

13.
A graph G is 1‐Hamilton‐connected if is Hamilton‐connected for every vertex . In the article, we introduce a closure concept for 1‐Hamilton‐connectedness in claw‐free graphs. If is a (new) closure of a claw‐free graph G, then is 1‐Hamilton‐connected if and only if G is 1‐Hamilton‐connected, is the line graph of a multigraph, and for some , is the line graph of a multigraph with at most two triangles or at most one double edge. As applications, we prove that Thomassen's Conjecture (every 4‐connected line graph is hamiltonian) is equivalent to the statement that every 4‐connected claw‐free graph is 1‐Hamilton‐connected, and we present results showing that every 5‐connected claw‐free graph with minimum degree at least 6 is 1‐Hamilton‐connected and that every 4‐connected claw‐free and hourglass‐free graph is 1‐Hamilton‐connected.  相似文献   

14.
An ‐coloring of a cubic graph G is an edge coloring of G by points of a Steiner triple system such that the colors of any three edges meeting at a vertex form a block of . A Steiner triple system that colors every simple cubic graph is said to be universal. It is known that every nontrivial point‐transitive Steiner triple system that is neither projective nor affine is universal. In this article, we present the following results.
    相似文献   

15.
An even factor of a graph is a spanning subgraph in which each vertex has a positive even degree. We show that if a simple graph admits an even factor, then one of its even factors has at least edges.  相似文献   

16.
《Journal of Graph Theory》2018,89(3):266-287
The Erdős–Hajnal conjecture states that for every given undirected graph H there exists a constant such that every graph G that does not contain H as an induced subgraph contains a clique or a stable set of size at least . The conjecture is still open. Its equivalent directed version states that for every given tournament H there exists a constant such that every H‐free tournament T contains a transitive subtournament of order at least . In this article, we prove that for several pairs of tournaments, H1 and H2, there exists a constant such that every ‐free tournament T contains a transitive subtournament of size at least . In particular, we prove that for several tournaments H, there exists a constant such that every ‐free tournament T, where stands for the complement of H, has a transitive subtournament of size at least . To the best of our knowledge these are first nontrivial results of this type.  相似文献   

17.
《Journal of Graph Theory》2018,88(2):347-355
A connected t‐chromatic graph G is double‐critical if is ‐colorable for each edge . A long‐standing conjecture of Erdős and Lovász that the complete graphs are the only double‐critical t‐chromatic graphs remains open for all . Given the difficulty in settling Erdős and Lovász's conjecture and motivated by the well‐known Hadwiger's conjecture, Kawarabayashi, Pedersen, and Toft proposed a weaker conjecture that every double‐critical t‐chromatic graph contains a minor and verified their conjecture for . Albar and Gonçalves recently proved that every double‐critical 8‐chromatic graph contains a K8 minor, and their proof is computer assisted. In this article, we prove that every double‐critical t‐chromatic graph contains a minor for all . Our proof for is shorter and computer free.  相似文献   

18.
《Journal of Graph Theory》2018,88(3):385-401
A path cover of a graph is a set of disjoint paths so that every vertex in the graph is contained in one of the paths. The path cover number of graph G is the cardinality of a path cover with the minimum number of paths. Reed in 1996 conjectured that a 2‐connected 3‐regular graph has path cover number at most . In this article, we confirm this conjecture.  相似文献   

19.
A graph G is called H‐saturated if it does not contain any copy of H, but for any edge e in the complement of G, the graph contains some H. The minimum size of an n‐vertex H‐saturated graph is denoted by . We prove holds for all , where is a cycle with length k. A graph G is H‐semisaturated if contains more copies of H than G does for . Let be the minimum size of an n‐vertex H‐semisaturated graph. We have We conjecture that our constructions are optimal for . © 2012 Wiley Periodicals, Inc. J. Graph Theory 73: 203–215, 2013  相似文献   

20.
A kweak bisection of a cubic graph G is a partition of the vertex‐set of G into two parts V1 and V2 of equal size, such that each connected component of the subgraph of G induced by () is a tree of at most vertices. This notion can be viewed as a relaxed version of nowhere‐zero flows, as it directly follows from old results of Jaeger that every cubic graph G with a circular nowhere‐zero r‐flow has a ‐weak bisection. In this article, we study problems related to the existence of k‐weak bisections. We believe that every cubic graph that has a perfect matching, other than the Petersen graph, admits a 4‐weak bisection and we present a family of cubic graphs with no perfect matching that do not admit such a bisection. The main result of this article is that every cubic graph admits a 5‐weak bisection. When restricted to bridgeless graphs, that result would be a consequence of the assertion of the 5‐flow Conjecture and as such it can be considered a (very small) step toward proving that assertion. However, the harder part of our proof focuses on graphs that do contain bridges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号