首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
A discrete-time predictive dynamic user-optimal departure time/route choice problem has been formulated and solved with the nested diagonalization method by Chen, H.K., Hsueh, C.F. (1998a. A discrete-time dynamic user-optimal departure time/route choice model. Transportation Engineering, ASCE 124 (3), 246–254). That model did not impose constraints on either departure times at origin or arrival times at destination, which are typically required for regular work trips. However, for better representing practical situations, the time-window constraints associated with both the departure times and arrival times, along with link capacity side constraints, need to be incorporated into the aforementioned model. The resulting dynamic capacitated user-optimal departure time/route choice model with time-window can appropriately model the queuing delay associated with each capacitated time–space link and also can properly differentiate off-peak and peak phenomena within the analysis period. A numerical example is provided for demonstration.  相似文献   

2.
We consider a single-stage queuing system where arrivals and departures are modeled by point processes with stochastic intensities. An arrival incurs a cost, while a departure earns a revenue. The objective is to maximize the profit by controlling the intensities subject to capacity limits and holding costs. When the stochastic model for arrival and departure processes are completely known, then a threshold policy is known to be optimal. Many times arrival and departure processes can not be accurately modeled and controlled due to lack of sufficient calibration data or inaccurate assumptions. We prove that a threshold policy is optimal under a max–min robust model when the uncertainty in the processes is characterized by relative entropy. Our model generalizes the standard notion of relative entropy to account for different levels of model uncertainty in arrival and departure processes. We also study the impact of uncertainty levels on the optimal threshold control.  相似文献   

3.
This paper proposes a novel approach for energy-efficient timetabling by adjusting the running time allocation of given timetables using train trajectory optimization. The approach first converts the arrival and departure times to time window constraints in order to relax the given timetable. Then a train trajectory optimization method is developed to find optimal arrival/departure times and optimal energy-efficient speed profiles within the relaxed time windows. The proposed train trajectory optimization method includes two types, a single-train trajectory optimization (STTO), which focuses on optimizing individual train movements within the relaxed arrival and departure time windows, and a multi-train trajectory optimization (MTTO), which computes multi-train trajectories simultaneously with a shared objective of minimizing multi-train energy consumption and an additional target of eliminating conflicts between trains. The STTO and MTTO are re-formulated as a multiple-phase optimal control problem, which has the advantage of accurately incorporating varying gradients, curves and speed limits and different train routes. The multiple-phase optimal control problem is then solved by a pseudospectral method. The proposed approach is applied in case studies to fine-tune two timetables, for a single-track railway corridor and a double-track corridor of the Dutch railway. The results suggest that the proposed approach is able to improve the energy efficiency of a timetable.  相似文献   

4.
In container terminals, the actual arrival time and handling time of a vessel often deviate from the scheduled ones. Being the input to yard space allocation and crane planning, berth allocation is one of the most important activities in container terminals. Any change of berth plan may lead to significant changes of other operations, deteriorating the reliability and efficiency of terminal operations. In this paper, we study a robust berth allocation problem (RBAP) which explicitly considers the uncertainty of vessel arrival delay and handling time. Time buffers are inserted between the vessels occupying the same berthing location to give room for uncertain delays. Using total departure delay of vessels as the service measure and the length of buffer time as the robustness measure, we formulate RBAP to balance the service level and plan robustness. Based on the properties of the optimal solution, we develop a robust berth scheduling algorithm (RBSA) that integrates simulated annealing and branch-and-bound algorithm. To evaluate our model and algorithm design, we conduct computational study to show the effectiveness of the proposed RBSA algorithm, and use simulation to validate the robustness and service level of the RBAP formulation.  相似文献   

5.
The classical Wardrop User Equilibrium (UE) assignment model assumes traveller choices are based on fixed, known travel times, yet these times are known to be rather variable between trips, both within and between days; typically, then, only mean travel times are represented. Classical Stochastic User Equilibrium (SUE) methods allow the mean travel times to be differentially perceived across the population, yet in a conventional application neither the UE or SUE approach recognises the travel times to be inherently variable. That is to say, there is no recognition that drivers risk arriving late at their destinations, and that this risk may vary across different paths of the network and according to the arrival time flexibility of the traveller. Recent work on incorporating risky elements into the choice process is seen either to neglect the link to the arrival constraints of the traveller, or to apply only to restricted problems with parallel alternatives and inflexible travel time distributions. In the paper, an alternative approach is described based on the ‘schedule delay’ paradigm, penalising late arrival under fixed departure times. The approach allows flexible travel time densities, which can be fitted to actual surveillance data, to be incorporated. A generalised formulation of UE is proposed, termed a Late Arrival Penalised UE (LAPUE). Conditions for the existence and uniqueness of LAPUE solutions are considered, as well as methods for their computation. Two specific travel time models are then considered, one based on multivariate Normal arc travel times, and an extended model to represent arc incidents, based on mixture distributions of multivariate Normals. Several illustrative examples are used to examine the sensitivity of LAPUE solutions to various input parameters, and in particular its comparison with UE predictions. Finally, paths for further research are discussed, including the extension of the model to include elements such as distributed arrival time constraints and penalties.  相似文献   

6.
The objective of this paper is to derive a general approximation for the single product lot sizing model with queueing delays, explicitly including a non-zero setup time. Most research focuses on bulk (batch) arrival and departure processes. In this paper we assume an individual arrival and departure process allowing the modelling of more realistic demand patterns. A general approximation of the expected lead time and the variance of the lead time is derived. The lead time probability distribution is approximated by means of a lognormal distribution. This allows the manufacturer to quote lead times satisfying a specified customer service level as a function of the lot size. The main result is a convex relationship of the expected lead time and the quoted lead time as a function of the lot size. The results are illustrated by means of numerical examples.  相似文献   

7.
In this paper we deal with a single removable service station queueing system with Poisson arrivals and Erlang distribution service times. The service station can be turned on at arrival epochs or off at departure epochs. While the service station is working, it is subject to breakdowns according to a Poisson process. When the station breaks down, it requires repair at a repair facility, where the repair times follow the negative exponential distribution. Conditions for a stable queueing system, that is steady-state, are provided. The steady-state results are derived and it is shown that the probability that the service station is busy is equal to the traffic intensity. Following the construction of the total expected cost function per unit time, we determine the optimal operating policy at minimum cost.  相似文献   

8.
A within-day dynamic demand model is formulated, embodying, in addition to the classic generation, distribution and modal split stages, an actual demand model taking into account departure time choice. The work focuses on this last stage, represented through an extension of the discrete choice framework to a continuous choice set. The dynamic multimodal supply and equilibrium model based on implicit path enumeration, which have been developed in previous work are outlined here, to define within-day dynamic elastic demand stochastic multimodal equilibrium as a fixed point problem on users flows and transit line frequencies. A MSA algorithm capable, in the case of Logit route choice models, of supplying equilibrium flows and frequencies on real dimension networks, is presented, as well as the specific procedures implementing the departure time choice and actual demand models. Finally, the results obtained on a test network are presented and conclusions are drawn.  相似文献   

9.
The paper studies a train scheduling problem faced by railway infrastructure managers during real-time traffic control. When train operations are perturbed, a new conflict-free timetable of feasible arrival and departure times needs to be re-computed, such that the deviation from the original one is minimized. The problem can be viewed as a huge job shop scheduling problem with no-store constraints. We make use of a careful estimation of time separation among trains, and model the scheduling problem with an alternative graph formulation. We develop a branch and bound algorithm which includes implication rules enabling to speed up the computation. An experimental study, based on a bottleneck area of the Dutch rail network, shows that a truncated version of the algorithm provides proven optimal or near optimal solutions within short time limits.  相似文献   

10.
This paper presents the incremental stochastic user equilibrium (ISUE) model for predicting how travellers select their departure times from an origin in a single origin-destination pair system if they have desired times of arrival at the destination. The temporal distribution of the peak traffic is the result of commuters' selections of departure times. The stochastic user equilibrium (SUE) model is one of the techniques for estimating this distribution, but is computationally cumbersome to apply. In addition, existence and uniqueness of the solution to the SUE formulation and its approximations have not been proven. The ISUE is another approximation to the SUE, and it is based on an approach for which existence and uniqueness of the solution have been established.  相似文献   

11.
On air traffic flow management with rerouting. Part I: Deterministic case   总被引:1,自引:0,他引:1  
In this paper a deterministic mixed 0-1 model for the air traffic flow management problem is presented. The model allows for flight cancelation and rerouting, if necessary. It considers several types of objective functions to minimize, namely, the number of flights exceeding a given time delay (that can be zero), separable and non-separable ground holding and air delay costs, penalization of alternative routes to the scheduled one for each flight, time unit delay cost to arrive to the nodes (i.e., air sectors and airports) and penalization for advancing arrival to the nodes over the schedule. The arrival and departure capacity at the airports is obviously considered, as well as the capacity of the different sectors in the airspace, being allowed to vary along the time horizon. So, the model is aimed to help for better decision-making regarding the ground holding and air delays imposed on flights in an air network, on a short term policy for a given time horizon. It is so strong that there is no additional cut appending, nor does it require the execution of the branch-and-bound phase to obtain the optimal solution for the problem in many cases of the testbeds with which we have experimented. In the other cases, the help of the cut identifying and heuristic schemes of the state-of-the art optimization engine of choice is required in order to obtain the solution of the problem, and the branch-and-bound phase is not required either. An extensive computational experience is reported for large-scale instances, some of which have been taken from the literature and some others were coming from industry.  相似文献   

12.
Real-time dispatch problems arise when preparing and executing the daily schedule of local transport companies. We consider the daily dispatch of transport vehicles like trams in storage yards. Immediately on arrival, each tram has to be assigned to a location in the depot and to an appropriate round trip of the next schedule period. In order to achieve a departure order satisfying the scheduled demand, shunting of vehicles may be unavoidable. Since shunting takes time and causes operational cost, the number of shunting movements should be minimized without violation of operational constraints. As an alternative, we may serve some round trips with trams of type differing from the requested type. In practice, the actual arrival order of trams may differ substantially from the scheduled arrival order. Then, dispatch decisions are due within a short time interval and have to be based on incomplete information. For such real-time dispatch problems, we develop combinatorial optimization models and exact as well as heuristic algorithms. Computational experience for real-world and random data shows that the derived methods yield good (often optimal) solutions within the required tight time bounds. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
《Optimization》2012,61(2):261-272
By means of a general formula for stochastic processes with imbedded marked point processes (PMP) some necessary and sufficient condition is given for the validity of a relationship, which is well-known in the case of exponentially distributed service times, between stationary time and customer state probabilities for loss systems G/GI/s/O (Theorem 3). A result of Miyazawa for the GI/GI/l/∞ queue is generalized to the case of non-recurrent interarrival times (Theorem 4)-. Furthermore, bounds are derived for the mean increment of the waiting time process at arrival epochs and for the mean actual waiting time in multi-server queues.  相似文献   

14.
Evacuations are massive operations that create heavy travel demand on road networks some of which are experiencing major congestions even with regular traffic demand. Congestion in traffic networks during evacuations, can be eased either by supply or demand management actions. This study focuses on modeling demand management strategies of optimal departure time, optimal destination choice and optimal zone evacuation scheduling (also known as staggered evacuation) under a given fixed evacuation time assumption. The analytical models are developed for a system optimal dynamic traffic assignment problem, so that their characteristics can be studied to produce insights to be used for large-scale solution algorithms. While the first two strategies were represented in a linear programming (LP) model, evacuation zone scheduling problem inevitable included integers and resulted in a mixed integer LP (MILP) one. The dual of the LP produced an optimal assignment principle, and the nature of the MILP formulations revealed clues about more efficient heuristics. The discussed properties of the models are also supported via numerical results from a hypothetical network example.  相似文献   

15.
研究带有准备时间的单机学习效应模型,其中工件加工时间具有指数时间学习效应,即工件的实际加工时间是已经排好的工件加工时间的指数函数。学习效应模型考虑工件的实际加工时间同时依赖于工件本身的加工时间和已加工工件的累计加工时间,目标函数为最小化总完工时间。这个问题是NP-难的,提出了一个数学规划模型来求解该问题的最优解。通过分析几个优势性质和下界,提出分支定界算法来求解此问题,并设计启发式算法改进分支定界算法的上界值。通过仿真实验验证了分支定界算法在求解质量和时间方面的有效性。  相似文献   

16.
All studies in the admission control of a service station make decisions at arrival epochs. When arrivals are internal and are rejected from a queue, the rejected jobs have to be routed to other stations in the system. However the system will not know whether a job will be admitted to a queue or not until its arrival epoch to that queue. Thus, the system has to react dynamically and agilely to the decisions made at a specific queue and may try several queues before finding a queue that admits the job. This paper remedies these difficulties by changing the decision epochs of the admission control from arrival epochs to departure epochs with the actions of switching (keeping) the arrival stream on or off. Thus upstream stations will have information on the admission status of their downstream stations all the time. It is proved that the optimal policy for this revised admission control system is of control limit type for an M/G/1 queue. Comparisons of the optimal values and optimal policies for the admission controls made at arrival epochs and at departure epochs are included in the paper.  相似文献   

17.
Travel times in congested transportation networks are time-varying quantities that can at best be known a priori probabilistically. In such networks, the arc weights (travel times) are represented by random variables whose probability distribution functions vary with time. These networks are referred to herein as stochastic, time-varying, or STV, networks. The determination of “least time” routes in STV networks is more difficult than in deterministic networks, in part because, for a given departure time, more than one path may exist between an origin and destination, each with a positive probability of having the least travel time. In this paper, measures for comparing time-varying, random path travel times over a time period are given for both a priori optimization and time-adaptive choices (where a driver may react to revealed arrival times at intermediate nodes). The resulting measures are central to the development of methodologies for determining “optimal” paths in STV networks.  相似文献   

18.
In this paper, we model an open queuing network and analyze performance measures with and without feedback as two individual cases. The model comprises a single queue with a dedicated processor capable of handling two like jobs as a single job. Two different job arrivals with different processing times are considered with an internal timer. Performance measures such as average queue length, average response time, average waiting time of the jobs are computed and plotted. The joint density function for the inter arrival time and arrival rate are derived. The probability mass function has been derived for all possible cases that may arise in a duration (0, t], considering n job arrivals during that period of time and an integer programming problem is formulated to obtain optimal sequence patterns which would maximize the efficiency of the model.  相似文献   

19.
We present an economic model for the optimization of preventive maintenance in a production process with two quality states. The equipment starts its operation in the in-control state but it may shift to the out-of-control state before failure or scheduled preventive maintenance. The time of shift and the time of failure are generally distributed random variables. The two states are characterized by different failure rates and revenues. We first derive the structure of the optimal maintenance policy, which is defined by two critical values of the equipment age that determine when to perform preventive maintenance depending on the actual (observable) state of the process. We then provide properties of the optimal solution and show how to determine the optimal values of the two critical maintenance times accurately and efficiently. The proposed model and, in particular, the behavior of the optimal solution as the model parameters and the shift and failure time distributions change are illustrated through numerical examples.  相似文献   

20.
We study a BMAP/>SM/1 queue with batch Markov arrival process input and semi‐Markov service. Service times may depend on arrival phase states, that is, there are many types of arrivals which have different service time distributions. The service process is a heterogeneous Markov renewal process, and so our model necessarily includes known models. At first, we consider the first passage time from level {κ+1} (the set of the states that the number of customers in the system is κ+1) to level {κ} when a batch arrival occurs at time 0 and then a customer service included in that batch simultaneously starts. The service descipline is considered as a LIFO (Last‐In First‐Out) with preemption. This discipline has the fundamental role for the analysis of the first passage time. Using this first passage time distribution, the busy period length distribution can be obtained. The busy period remains unaltered in any service disciplines if they are work‐conserving. Next, we analyze the stationary workload distribution (the stationary virtual waiting time distribution). The workload as well as the busy period remain unaltered in any service disciplines if they are work‐conserving. Based on this fact, we derive the Laplace–Stieltjes transform for the stationary distribution of the actual waiting time under a FIFO discipline. In addition, we refer to the Laplace–Stieltjes transforms for the distributions of the actual waiting times of the individual types of customers. Using the relationship between the stationary waiting time distribution and the stationary distribution of the number of customers in the system at departure epochs, we derive the generating function for the stationary joint distribution of the numbers of different types of customers at departures. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号