首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 483 毫秒
1.
Poly(o-aminophenol) (POAP) was formed by successive cyclic voltammetry in monomer solution in the presence of sodium dodecyl sulfate (SDS) on the surface of a carbon paste electrode (CPE). Ni(II) ions were incorporated into the electrode by immersion of the polymeric modified electrode having amine groups in 0.1 M Ni(II) ion solution. Electrochemical study of this modified electrode shows a good redox behavior of the Ni(III)/Ni(II) couple. The electrocatalytic oxidations of ceftazidim and cefazolin at the surface of the Ni/SDS-POAP/CPE were studied in a 0.1 M NaOH solution. Finally, using chronoamperometric method, the catalytic rate constants (k) for ceftazidim and cefazolin were calculated. Electrode was successfully applied for determination of ceftazidim and cefazolin in pharmaceutical preparations.  相似文献   

2.
In this research, a modified electrode has been produced during the electropolymerization of 4-Aminobenzoic acid in the presence of sodium dodecylsulfate (SDS) and then Ni(II) ions were incorporated to the polymer by immersion of the modified electrode in a 0.1 M Ni(II) ions solution. The electrochemical behavior of Ni/poly(4-aminobenzoic acid)/sodium dodecylsulfate/carbon paste electrode (Ni/poly(4-AB)/SDS/CPE) was investigated by using cyclic voltammetry. The experimental results exhibited the stable redox behavior of the Ni(III)/Ni(II) couple immobilized at the polymeric electrode. This polymeric modified electrode has a very good activity toward the sulfite electrooxidation in a phosphate buffer solution (pH 11). By comparison of the different responses to sulfite oxidation using electrodes Ni/poly(4-AB)/SDS/CPE, poly(4-AB)/SDS/CPE and CPE, we observed that the former electrode is a more effective catalyst for the electrooxidation of sulfite. Under optimal experimental conditions, the peak current response increased linearly with sulfite concentration over the range of 0.1–1 and 1–10 mM. The detection limit of the method was 0.063 mM. Finally, the method was applied to the determination of sulfite in weak liquor sample.  相似文献   

3.
This study investigates the electrocatalytic oxidation of glucose and some other carbohydrates on nickel/poly(o‐aminophenol) modified carbon paste electrode as an enzyme free electrode in alkaline solution. Poly(o‐aminophenol) was prepared by electropolymerization using a carbon paste electrode bulk modified with o‐aminophenol and continuous cyclic voltammetry in HClO4 solution. Then Ni(II) ions were incorporated to electrode by immersion of the polymeric modified electrode having amine group in 1 M Ni(II) ion solution. Cyclic voltammetric and chronoamperometric experiments were used for the electrochemical study of this modified electrode; a good redox behavior of Ni(OH)2/NiOOH couple at the surface of electrode can be observed, the capability of this modified electrode for catalytic oxidation of glucose and other carbohydrates was demonstrated. The amount of α and surface coverage (Γ*) of the redox species and catalytic chemical reaction rate constant (k) for each carbohydrate were calculated. Also, the electrocatalytic oxidation peak currents of all tested carbohydrates exhibit a good linear dependence on concentration and their quantification can be done easily.  相似文献   

4.
Poly(o‐anisidine) (POA) was formed by successive cyclic voltammetry in monomer solution containing sodium dodecyl sulfate (SDS) at the surface of carbon paste electrode. Then Ni(II) ions were incorporated to electrode by immersion of the polymeric modified electrode having amine group in 0.1 M Ni(II) ion solution. Cyclic voltammetric and chronoamperometric experiments were used for the electrochemical study of this modified electrode; a good redox behavior of Ni(OH)2/NiOOH couple at the surface of electrode can be observed. The capability of this modified electrode for catalytic oxidation of folic acid was demonstrated. The amount of α and surface coverage (Γ*) of the redox species and catalytic chemical reaction rate constant (k) for folic acid oxidation were calculated. The catalytic oxidation peak current of folic acid was linearly dependent on its concentration and a linear calibration curve was obtained in the range of 0.1 to 5 mM with a correlation coefficient of 0.9994. The limit of detection (3σ) was determined as 0.091 mM. This electrocatalytic oxidation was used as simple, selective and precise voltammetric method for determination of folic acid in pharmaceutical preparations.  相似文献   

5.
Poly(isonicotinic acid) (PINA) was formed by successive cyclic voltammetry in monomer solution in the presence of sodium dodecyl sulfate (SDS) on the surface of a carbon paste electrode (CPE). Ni(II) and Co(II) ions were incorporated into the electrode by immersion of the polymer-modified electrodes in Ni(II) and Co(II) ion solutions in different proportions. After the preparation of modified electrodes, their electrochemical behavior was studied by cyclic voltammetric experiments. Electrocatalytic oxidation of methanol at the surface of the modified electrodes was studied in 1?M NaOH solution. These modified electrodes exhibit high electrocatalytic activity and stability in alkaline solution, showing oxidation peaks at low potentials with high current densities. The electrooxidation of methanol was found to be more efficient on CPE/PINA(SDS)/Ni80Co20 than on CPE/PINA(SDS)/Ni and CPE/PINA(SDS)/Ni50Co50. The effects of various parameters such as scan rates and methanol concentration on the electrooxidation of methanol are also investigated.  相似文献   

6.
《中国化学会会志》2018,65(5):603-612
In this work, the electrochemical oxidation of methanol was investigated by different electrochemical methods at a carbon paste electrode (CPE) modified with (N‐5‐methoxysalicylaldehyde, N´‐2‐hydroxyacetophenon‐1, 2 phenylenediimino nickel(II) complex (Ni(II)–MHP) and reduced graphene oxide (RGO), which is named Ni(II)‐MHP/RGO/CPE, in an alkaline solution. This modified electrode was found to be efficient for the oxidation of methanol. It was found that methanol was oxidized by the NiOOH groups generated by further electrochemical oxidation of nickel(II) hydroxide on the surface of the modified electrode. Under optimum conditions, some parameters of the analyte (MeOH), such as the electron transfer coefficient (α), the electron transfer rate constant) ks), and the diffusion coefficient of species in a 0.1 M solution (pH = 13), were determined. The designed sensor showed a linear dynamic range of 2.0–100.0 and 100.0–1000.0 μM and a detection limit of 0.68 μM for MeOH determination. The Ni(II)‐MHP/RGO/CPE sensor was used in the determination of MeOH in a real sample.  相似文献   

7.
Poly(N,N-dimethylaniline) (PDMA) was formed by successive cyclic voltammetry in monomer solution in the presence of sodium dodecyl sulfate (SDS) on the surface of a carbon paste electrode. The polymerization behavior of N,N-dimethylaniline in the presence of SDS is quite different from that of N,N-dimethylaniline in the absence of SDS. The effect of varying amount of SDS on the rate of polymerization of N,N-dimethylaniline was investigated. The electrochemical behavior of the SDS-PDMA carbon paste electrode has been investigated by cyclic voltammetry in 0.5 M H2SO4 and 5 mM K4[Fe(CN)6]/0.1 M KCl solutions as the supporting electrolyte and model system, respectively. The synthesized PDMA was characterized by FT-IR and scanning electron microscopy (SEM). Ni(II) ions were incorporated into the electrode by immersion of the polymeric modified electrode having amine groups in 0.1 M Ni(II) ion solution. The electro catalytic oxidations of methanol at the surface of the Ni/SDS-PDMA electrode were studied in a 0.1 M NaOH solution. Compared to bare carbon paste and PDMA-modified carbon paste electrodes; the SDS-PDMA electrode significantly enhanced the catalytic efficiency of Ni ions for methanol oxidation.  相似文献   

8.
In this study, we prepared a modified carbon paste electrode consisting of Nickel entrapped in synthesized ZSM‐5 zeolite (Ni/ZMCPE). Then Ni(II) ions were incorporated to electrode by immersion of modified electrode in 1 M Ni(II) ion solution. Cyclic voltammetry and chronoamperometry experiments were used for electrochemical study of this modified electrode; a good redox behavior of Ni(OH)2/NiOOH couple at the surface of electrode can be observed, the excellent capability of this modified electrode for catalytic oxidation of formaldehyde was demonstrated during the anodic potential sweep in alkaline solution. The amount of transfer coefficient (α), surface coverage (Γ*) of the redox species and catalytic chemical reaction rate constant (k) for formaldehyde were evaluated. Thus, it can be a candidate as an anode for fuel cell application.  相似文献   

9.
Nickel ions were incorporated in NaY zeolite according to cation exchange mechanism. Then NiY zeolite was used as modifier for preparation of modified carbon paste electrode. The electrochemical behavior of NiY-modified carbon paste electrode (NiY/CPE) was studied in alkaline solution using cyclic voltammetry method. Ability of different electrodes containing NiY/CPE, Ni-NiY/CPE, Ni-NaY/CPE, and Ni/CPE for electrocatalytic oxidation of methanol was compared (three last electrodes prepared by open circuit accumulation of Ni(II) ions on the surface of NiY/CPE, NaY/CPE, and bare CPE, respectively). Results show that Ni-NiY/CPE is best catalyst for the electrochemical oxidation of methanol in alkaline solution and both process of earlier Ni ion incorporation through cation exchange in NaY zeolite and open circuit accumulation of Ni ion on the surface of electrode are essential to have good catalyst. Effect of graphite–zeolite ratio on electrocatalytic current was studied and 3:1 ratio of graphite–zeolite was selected as optimum ratio for preparing electrode. Ni-NiY/CPE has very good stability toward the methanol oxidation in concentration range of 0.005 to 0.5 M. Finally, using chronoamperometric method, the catalytic rate constant (k) for methanol was found to be 1.56 × 104 cm3 mol−1 s−1.  相似文献   

10.
The poly(m‐toluidine) film was prepared by using the repeated potential cycling technique in an acidic solution at the surface of carbon paste electrode. Then transition metal ions of Ni(II) were incorporated to the polymer by immersion of the modified electrode in a 0.2 M NiSO4, also the electrochemical characterization of this modified electrode exhibits stable redox behavior of the Ni(III)/Ni(II) couple. The electrocatalytic ability of Ni(II)/poly(m‐toluidine)/modified carbon paste electrode (Ni/PMT/MCPE) was demonstrated by electrocatalytic oxidation of hydrogen peroxide with cyclic voltammetry and chronoamperometry methods in the alkaline solution. The effects of scan rate and hydrogen peroxide concentration on the anodic peak height of hydrogen peroxide oxidation were also investigated. The catalytic oxidation peak current showed two linear ranges with different slopes dependent on the hydrogen peroxide concentration and the lower detection limit was 6.5 μM (S/N=3). The catalytic reaction rate constant, (kh), was calculated 5.5×102 M?1 s?1 by the data of chronoamperometry. This modified electrode has many advantages such as simple preparation procedure, good reproducibility and high catalytic activity toward the hydrogen peroxide oxidation. This method was also applied as a simple method for routine control and can be employed directly without any pretreatment or separation for analysis cosmetics products.  相似文献   

11.
Conducting and stable poly (N-methylaniline) film was prepared by using the repeated potential cycling technique in aqueous solution containing N-methylaniline, sulfuric acid, and sodium dodecyl sulfate (SDS) at the surface of carbon paste electrode (CPE). The transition metal ions of Co(ІІ) were incorporated to the polymer by immersion of the modified electrode in 0.1 M cobalt chloride solution for 10 min. The electrochemical characterization of this modified electrode exhibits stable redox behavior of Co(ІІ)Co(ІІІ) and formation of insoluble oxide/hydroxide cobalt species on the CPE surface. The modified electrode showed well-defined and stable redox couples in alkaline aqueous solution. The modified electrode showed excellent electrocatalytic activity for oxidation of hydrogen peroxide. The response of modified electrode toward the H2O2 oxidation was examined using cyclic voltammetry, differential pulse voltammetry, square wave voltammetry, and chronoamperometry. This modified electrode has many advantages such as simple preparation procedure, good reproducibility, and high catalytic activity toward the hydrogen peroxide oxidation. Such characteristics were explored for the specific determination of hydrogen peroxide in cosmetics product sample, giving results in excellent agreement with those obtained by standard method.  相似文献   

12.
In the present research, the electro oxidation of methanol was investigated by different electrochemical methods at a carbon paste electrode (CPE) modified with bis(salicylaldehyde)‐nickel(II)‐dihydrate complex (Ni(II)‐BS) and reduced graphene oxide (RGO) (which named Ni(II)‐BS/RGO/CPE) in an alkaline solution. This modified electrode showed very efficient activity for oxidation of methanol. It was found that methanol was oxidized by NiOOH groups generated by further electrochemical oxidation of nickel (II) hydroxide on the surface of the modified electrode. The rate constant and electron transfer coefficient were calculated to be 2.18 s?1 and 0.4, respectively. The anodic peak currents revealed a linear dependency with the square root of scan rate. This behaviour is the characteristic of a diffusion controlled process, so the diffusion coefficient of methanol was found to be 1.16×10?5 cm2 s?1 and the number of transferred electron was calculated to be 1. Moreover, differential pulse voltammetry (DPV) investigations showed that the peak current values were proportional to the concentration of methanol in two linear ranges. The obtained linear ranges were from 0.5 to 100.0 µM (R2=0.991) and 400.0 to 1300.0 µM (R2=0.992), and the detection limit was found to be 0.19 µM for methanol determination. Generally, the Ni(II)‐BS/RGO/CPE sensor was used for determination of methanol in an industrial ethanol solution containing 4.0 % methanol.  相似文献   

13.
In present work, the ionic liquid, 1‐butyl‐3‐methylimidazolium bis (trifluoromethylsulfonyl) imide was incorporated in the carbon paste electrode as the binder (IL‐CPE). O‐anisidine (OA) monomer is electropolymerized in the presence of an aqueous acidic solution onto IL‐CPE (POA/IL‐CPE). The as‐prepared substrate is used as a porous matrix for dispersion of Ni(II) ions by immersing the modified electrode in a nickel(II) nitrite solution. The modified electrodes are characterized by scanning electron microscopy (SEM) and electrochemical methods. The POA/IL‐CPE was applied successfully to highly efficient (current density of 18.2 mA cm?2) electrocatalytic oxidation of formaldehyde in alkaline medium. Finally, the rate constant for chemical reaction between formaldehyde and redox sites of the electrode was calculated.  相似文献   

14.
A lead film plated in situ at a carbon paste support was tested as a novel, potential electrode for adsorptive stripping voltammetric determination of cobalt traces in an ammonia buffer solution. To show the practical applicability of the new electrode, a catalytic adsorptive Co system in a supporting electrolyte containing 0.1 M ammonia buffer, 5×10?4 M nioxime and 0.25 M nitrite was selected and investigated as a model solution. Pb and Co ions were simultaneously accumulated in situ on the electrode surface: Pb ions electrochemically at ?1.3 V) and then at ?0.75 V, at which potential the Co(II)‐nioximate complex was also pre‐concentrated via adsorption. Instrumental parameters, such as the time of nucleation and formation of Pb film deposits, the time of accumulation of the Co‐nioxime complex at the PbF/CPE, and the procedures of electrode regeneration, were optimized to obtain good reproducibility and sensitivity of the Co response. The optimized procedure yields favorable and highly stable stripping responses with good precision (RSD=3% for a 5×10?8 M Co) and good linearity (up to 5×10?7 M, coefficient of determination, R=0.996). The detection limit was 4×10?10 M Co (0.023 μg L?1) for an accumulation time of 120 s. The method enables the determination of Co in the presence of high excesses of Ni or Zn. The voltammetric data were correlated with the structural characterization by scanning electron microscopy (SEM) and X‐ray fluorescence spectroscopy (XRF).  相似文献   

15.
Pt‐nanoparticles were synthesized and introduced into a carbon paste electrode (CPE), and the resulting modified electrode was applied to the anodic stripping voltammetry of copper(II) ions. The synthesized Pt‐nanoparticles were characterized by cyclic voltammetry, scanning electron microscopy and X‐ray photoelectron spectroscopy techniques to confirm the purity and the size of the prepared Pt‐nanoparticles (ca. 20 nm). This incorporated material seems to act as catalysts with preconcentration sites for copper(II) species that enhances the sensitivity of Cu(II) ions to Cu(I) species at a deposition potential of ?0.6 V in an aqueous solution. The experimental conditions, such as, the electrode composition, pH of the solution, pre‐concentration time, were optimized for the determination of Cu(II) ion using as‐prepared electrode. The sensitivity changes on the different binder materials and the presence of surfactants in the test solution. The interference effect of the coexisted metals were also investigated. In the presence of surfactants, especially TritonX‐100, the Cu(II) detection limit was lowered to 3.9×10?9 M. However, the Pt‐nanoparticle modified CPE begins to degrade when the period of deposition exceeds to 10 min. Linear response for copper(II) was found in the concentration range between 3.9×10?8 M and 1.6×10?6 M, with an estimated detection limit of 1.6×10?8 M (1.0 ppb) and relative standard deviation was 4.2% (n=5).  相似文献   

16.
The behavior of a modified carbon paste electrode (CPE) for simultaneous determination of copper(II) and silver(I) by anodic adsorptive stripping voltammetry (ASV) was studied. The electrode was built incorporating the bis(2‐hydroxyacetophenone) butane‐2,3‐dihydrazone (BHAB) as a complexing agent to a Nujol‐graphite base paste. The resulting electrode demonstrated linear responses over the range of Cu(II) and Ag(I) concentrations 0.1–20 and 0.01–2.0 µM respectively. The relative standard deviation (RSD) for the determination of 5.0 µM of both metal ions were 2.9 and 3.1 % for Cu(II) and Ag(I), respectively. The method has been applied to the analysis of copper in wheat and barley seed samples and silver in developed radiological film.  相似文献   

17.
《Electroanalysis》2005,17(1):89-96
Iron‐phthalocyanines (FePc) are functionalized at multi‐walled carbon nanotubes (MWNTs) to remarkably improve the sensitivity toward hydrogen peroxide. We constructed a highly sensitive and selective glucose sensor on FePc‐MWNTs electrode based on the immobilization of glucose oxidase (GOD) on poly‐o‐aminophenol (POAP)‐electropolymerized electrode surface. SEM images indicate that GOD enzymes trapped in POAP film tend to deposit primarily on the curved tips and evenly disperse along the sidewalls. The resulting GOD@POAP/FePc‐MWNTs biosensor exhibits excellent performance for glucose with a rapid response (less than 8 s), a wide linear range (up to 4.0×10?3 M), low detection limits (2.0×10?7 M with a signal‐to‐noise of 3), a highly reproducible response (RSD of 2.6%), and long‐term stability (120 days). Such characteristics may be attributed to the catalytic activity of FePc and carbon nanotube, permselectivity of POAP film, as well as the large surface area of carbon nanotube materials.  相似文献   

18.
《Electroanalysis》2017,29(2):423-432
In the present paper, a stable and selective non‐enzymatic sensor is reported for determination of glucose (Glc) by using a carbon paste electrode modified with multiwall carbon nanotubes and Ni(II)‐SHP complex as modifier in an alkaline solution. This modified electrode showed impressive activity for oxidation of glucose in NaOH solution. Herein, Ni(II)‐SHP acts as a suitable platform for oxidation of glucose to glucolactone on the surface of the modified electrode by decreasing the overpotential and increasing in the current of analyte. Under the optimum conditions, the rate constant and electron transfer coefficient between electrode and modifier, were calculated to be 1.04 s−1 and 0.64, respectively. The anodic peak currents indicated a linear dependency with the square root of scan rate and this behavior is the characteristic of a diffusion controlled process. So, the diffusion coefficient of glucose was found to be 3.12×10−6 cm2 s−1 due to the used number of transferred electron of 1. The obtained results revealed two linear ranges (5 to 190.0 μM (R2=0.997), 210.0 to 700.0 μM (R2=0.999)) and the detection limit of 1.3 μM for glucose was calculated by using differential pulse voltammetry (DPV) method. Also, the designed sensor was used for determination of glucose in the blood serum and urine samples. Some other advantages of Ni(II)‐SHP/CNT/CPE sensor are remarkable reproducibility, stability and selectivity which can be related to using nanomaterial of carbon nanotubes due to enhancement of electrode surface area.  相似文献   

19.
In this work, a modified carbon paste electrode consisting of Nickel dispersed in poly(ortho-aminophenol) was used for electrocatalytic oxidation of methanol in alkaline solution. A carbon paste electrode bulk modified with o-aminophenol was used for polymer preparation by cyclic voltammetry method; then, Ni(II) ions were incorporated by immersion of the modified electrode in 1 M Ni(II) ion solution at open circuit. The electrochemical characterization of this modified electrode exhibits stable redox behavior of the Ni(III)–Ni(II) couple. Electrocatalytic oxidation of methanol on the surface of modified electrode was investigated with cyclic voltammetry and chronoamperometry methods, and the dependence of the oxidation current and shape of cyclic voltammograms on methanol concentration and scan rate were discussed. Also, long-term stability of modified electrode for electrocatalytic oxidation of methanol was investigated.  相似文献   

20.
Poly(isonicotinic acid) (PINA) film was electrosynthesized on carbon paste electrode (CPE) by using the repeated potential cycling technique in aqueous solution containing isonicotinic acid (INA), sulfuric acid and sodium dodecyl sulfate (SDS). Then, nickel and cobalt ions were incorporated by immersion of CPE/PINA prepared in the presence of SDS (CPE/PINA(SDS)) in a solution with different proportions of nickel chloride and cobalt chloride. The electrochemical characterization of mixed hydroxides containing cobalt and nickel at the surface of the modified electrode is presented. The modified electrodes were successfully used in the electrocatalytic oxidation of glucose. Finally, the electrocatalytic oxidation peak currents of glucose exhibited a good linear dependence on concentration, and its quantification can be done easily. The good analytical performance, low cost and straightforward preparation method make this novel electrode material promising for the development of an effective glucose sensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号