首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An efficient, solvent‐free and 18‐crown‐6 catalyzed method for the synthesis of N‐alkyl‐4‐(4‐(5‐(2‐(alkyl‐amino)thiazol‐4‐yl)pyridin‐3‐yl)phenyl)thiazol‐2‐amine, N‐alkyl‐4‐(5‐(2‐alkyamino)thiazol‐4‐yl)pyridine‐3‐yl)thiazol‐2‐amine, and 4,4′‐bis‐{2‐[amino]‐4‐thiazolyl}biphenyl bis‐heterocyclic derivatives via microwave accelerated cyclization is presented.  相似文献   

2.
A novel family of four 1‐bromo‐2,6‐bis{[(λ5‐phosphanylidene)imino]methyl}benzene ligands has been synthesized and characterized. The phosphiniminomethyl substituents are decorated with either three phenyl groups, two phenyl and one cyclohexyl group, one phenyl and two cyclohexyl groups, or three cyclohexyl groups. Each ligand was metallated using zero‐valent nickel through an oxidative addition to form a family of organonickel(II) complexes, namely (2,6‐bis{[(triphenyl‐λ5‐phosphanylidene)imino]methyl}phenyl‐κ3N,C1,N′)bromidonickel(II) dichloromethane hemisolvate, [NiBr(C44H37N2P2)]·0.5CH2Cl2, (2,6‐bis{[(cyclohexyldiphenyl‐λ5‐phosphanylidene)imino]methyl}phenyl‐κ3N,C1,N′)bromidonickel(II) diethyl ether hemisolvate, [NiBr(C44H49N2P2)]·0.5C4H10O, (2,6‐bis{[(dicyclohexylphenyl‐λ5‐phosphanylidene)imino]methyl}phenyl‐κ3N,C1,N′)bromidonickel(II), [NiBr(C44H61N2P2)], and (2,6‐bis{[(tricyclohexyl‐λ5‐phosphanylidene)imino]methyl}phenyl‐κ3N,C1,N′)bromidonickel(II), [NiBr(C44H73N2P2)]. This family of complexes represents a useful opportunity to investigate the impact of incrementally changing the steric characteristics of a complex on its structure and reactivity.  相似文献   

3.
A series of substituted N‐(4‐substituted‐benzoyl)‐N‐[3‐(1‐methyl‐1H‐imidazol‐2‐yl)propyl]amines ( 13 ) and N‐arylsulfonyl‐N‐[3‐(1‐methyl‐1H‐imidazol‐2‐yl)propyl]amines ( 14 ) were prepared from the reaction of 3‐(1‐methyl‐1H‐imidazol‐2‐yl)propan‐1‐amine ( 7 ) with substituted benzoyl chloride or substituted‐benzene sulfonyl chloride respectively. Compound 7 was prepared by two independent methods.  相似文献   

4.
The Zn complexes bis(acetylacetonato‐κ2O,O′)bis{4′‐[4‐(methylsulfanyl)phenyl]‐4,2′:6′,4′′‐terpyridine‐κN1}zinc(II), [Zn(C5H7O2)2(C22H17N3S)2], (I), and {μ‐4′‐[4‐(methylsulfanyl)phenyl]‐4,2′:6′,4′′‐terpyridine‐κ2N1:N1′′}bis[bis(acetylacetonato‐κ2O,O′)zinc(II)], [Zn2(C5H7O2)4(C22H17N3S)], (II), are discrete entities with different nuclearities. Compound (I) consists of two centrosymmetrically related monodentate 4′‐[4‐(methylsulfanyl)phenyl]‐4,2′:6′,4′′‐terpyridine (L1) ligands binding to one ZnII atom sitting on an inversion centre and two centrosymmetrically related chelating acetylacetonate (acac) groups which bind via carbonyl O‐atom donors, giving an N2O4 octahedral environment for ZnII. Compound (II), however, consists of a bis‐monodentate L1 ligand bridging two ZnII atoms from two different Zn(acac)2 fragments. Intra‐ and intermolecular interactions are weak, mainly of the C—H...π and π–π types, mediating similar layered structures. In contrast to related structures in the literature, sulfur‐mediated nonbonding interactions in (II) do not seem to have any significant influence on the supramolecular structure.  相似文献   

5.
In the crystal structure of the novel acyl­thio­carbamate derivative O‐[2‐(1,3‐dioxo‐2,3‐dihydro‐1H‐isoindol‐2‐yl)­ethyl] N‐(4‐methyl­phenyl)‐N‐(3‐nitro­benzoyl)thio­carbamate, C25H19N3O6S, intra‐ and inter­molecular π–π inter­actions occur between the phthalimide and N‐benzoyl moieties. The partial atomic charges, calculated by ab initio methods, are consistent with the observed structure.  相似文献   

6.
2,5‐Bis[4‐methyl‐3‐(pyridin‐3‐yl)phenyl]‐1,3,4‐oxadiazole (L), C26H20N4O, forms one‐dimensional chains via two types of intermolecular π–π interactions. In catena‐poly[[dichloridozinc(II)]‐μ‐2,5‐bis[4‐methyl‐3‐(pyridin‐3‐yl)phenyl]‐1,3,4‐oxadiazole], [ZnCl2(C26H20N4O)]n, synthesized by the combination of L with ZnCl2, the ZnII centres are coordinated by two Cl atoms and two N atoms from two L ligands. [ZnCl2L]n forms one‐dimensional P (plus) and M (minus) helical chains, where the L ligand has different directions of twist. The helical chains stack together via interchain π–π and C—H...π interactions.  相似文献   

7.
The two title 5‐oxa‐2,6‐di­aza­spiro­[3.4]­octan‐1‐one adducts, 7‐benzoyl‐2‐(4‐methoxy­phenyl)‐6‐phenyl‐5‐oxa‐2,6‐di­aza­spiro­[3.4]­octan‐1‐one, C25H22N2O4, (III), and 6‐tert‐butyl‐2‐(4‐methyl­phenyl)‐7‐phenyl‐5‐oxa‐2,6‐di­aza­spiro­[3.4]­octan‐1‐one, C22H26N2O2, (IV), were obtained from a stereospecific [3+2] 1,3‐cyclo­addition of 3‐methyl­ene azetidin‐2‐ones as dipolaro­philes with nitro­nes. The lactam ring is conjugated with the p‐­methoxy­phenyl or p‐methyl­phenyl moiety. The envelope conformations of the isoxazolidine rings in (III) and (IV) are different, leading the substituents to be pseudo‐axial in (III) and pseudo‐equatorial in (IV).  相似文献   

8.
3,3′‐[2,2′‐Oxy‐bis‐(4S‐methyl, 5R‐phenyl‐1,3,2‐oxazaborolidine)]ethylene ( 4a ) and 3,3′‐[2, 2′‐oxy‐(4S‐methyl‐5R‐phenyl‐1,3,2‐oxazaborolidine)‐ (1,3,2‐benzoxazaborolidine)]ethylene ( 4b ) were synthesized by the reaction of N,N′‐bis‐[(1R,2S)‐norephedrine]oxalyl ( 3a ) or N,N′‐[((1R,2S)‐norephedrine, o‐hydroxyphenylamine]oxalyl ( 3b ) with BH3‐THF. The molecular structure of these compounds was established by NMR and infrared spectroscopy. The molecular geometry for 4 was studied by means of theoretical methods, resulting in structures that were in total agreement with those obtained by spectroscopy data and X‐ray diffraction. © 2005 Wiley Periodicals, Inc. Heteroatom Chem 16:513–519, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20151  相似文献   

9.
Some new derivatives of 3‐chloro‐1‐(4a,10b‐diazaphenanthrene‐2‐yl)‐4‐phenyl azetidin‐2‐one were synthesized through the reaction of N‐{4‐[phenyldiazenyl] phenyl}‐N‐[phenyl methylene] amine with 4‐[phenyldiazenyl] aniline. The resulting 3‐chloro‐4‐phenyl‐1‐{4‐[phenyldiazenyl] phenyl} azetidin‐2‐one intermediate in benzene was irradiated in a Pyrex vessel with 350 nm UV light in a photochemical reactor to give the desired derivatives (4a–j) . Structures of the new compounds were verified on the basis of spectral and elemental methods of analyses. Nine of the prepared compounds were tested for their anti‐inflammatory effects; most of these compounds showed potent and significant results compared with indomethacin.  相似文献   

10.
The structures of the title compounds, C15H13N3O4, (I), and C16H15N3O5 [IUPAC name: ethyl 6‐amino‐5‐cyano‐2‐methyl‐4‐(3‐nitro­phenyl)‐4H‐pyrano‐3‐carboxyl­ate], (II), are very similar, with the heterocyclic rings adopting boat conformations. The pseudo‐axial m‐nitro­phenyl substituents are rotated by 84.0 (1) and 98.7 (1)° in (I) and (II), respectively, with respect to the four coplanar atoms of the boat. The dihedral angles between the phenyl rings and nitro groups are 12.1 (2) and 8.4 (2)° in (I) and (II), respectively. The two compounds have similar patterns of intermolecular N—H?O and N—H?N hydrogen bonding, which link mol­ecules into infinite tapes along b .  相似文献   

11.
The synthesis, one‐ and two‐photon absorption (TPA) and emission properties of two novel 2,6‐anthracenevinylene‐based copolymers, poly[9,10‐bis(3,4‐bis(2‐ethylhexyloxy)phenyl)‐2,6‐anthracenevinylene‐alt‐N‐octyl‐3,6‐carbazolevinyl‐ene] ( P1 ) and poly[9,10‐bis(3,4‐bis(2‐ethylhexyloxy)phenyl)‐2,6‐anthracenevinyl‐ene‐alt‐N‐octyl‐2,7‐carbazolevinylene] ( P2 ) were reported. The as‐synthesized polymers have the number‐average molecular weights of 1.56 × 104 for P1 and 1.85 × 104 g mol?1 for P2 and are readily soluble in common organic solvents. They emit strong bluish‐green one‐ and two‐photon excitation fluorescence in dilute toluene solution (? P1 = 0.85, ? P2 = 0.78, λem( P1 ) = 491 nm, λem( P2 ) = 483 nm). The maximal TPA cross‐sections of P1 and P2 measured by the two‐photon‐induced fluorescence method using femtosecond laser pulses in toluene are 840 and 490 GM per repeating unit, respectively, which are obviously larger than that (210 GM) of poly[9,10‐bis‐(3,4‐bis(2‐ethylhexyloxy) phenyl)‐2,6‐anthracenevinylene], indicating that the poly(2,6‐anthracenevinylene) derivatives with large TPA cross‐sections can be obtained by inserting electron‐donating moieties into the polymer backbone. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 463–470, 2010  相似文献   

12.
4‐Ethoxycarbonyl‐5‐phenyl‐2,3‐dihydrofuran‐2,3‐dione 1 reacts with aldehydes via the acylketene intermediate 2 giving the 1,3‐dioxin‐4‐ones 3a‐e and the 1,4‐bis(5‐ethoxycarbonyl‐4‐oxo‐6‐phenyl‐4H‐1,3‐dioxin‐2‐yl)benzene 4 , and a one step reaction between dibenzoylmethane and oxalylchloride gave 3,5‐dibenzoyl‐2,6‐diphenyl‐4‐pyrone 7 . The reaction of 1 with dibenzoylmethane, a dicarbonyl compound, provided ethyl 3‐benzoyl‐4‐oxo‐2,6‐diphenylpyran‐5‐carboxylate derivative 9 . Compound 9 was converted into the corresponding ethyl 3‐benzoyl‐4‐hydroxy‐2,6‐diphenylpyridine‐5‐carboxylate derivative 10 via its reaction with ammonium hydroxyde solution in 1 ‐butanol.  相似文献   

13.
Four new Schiff bases were designed and synthesized. 5‐Methyl‐4‐(4‐aminophenylamino‐phenyl‐methylene)‐2‐phenyl‐2,4‐dihydro‐pyrazol‐3‐one (compound 1 ) and 5‐methyl‐4‐(2‐aminophenylamino‐phenyl‐methylene)‐2‐phenyl‐2,4‐dihydro‐pyrazol‐3‐one (compound 2 ) were synthesized by interaction of 1‐phenyl‐3‐methyl‐4‐benzoyl‐2‐pyrazolin‐5‐one (PMBP) with o‐ and p‐phenylenediamine, respectively; 4,4′‐(1,2‐phenylenebis(azanediyl)bis(phenylmethanylylidene))bis(3‐methyl‐1‐phenyl‐1H‐pyrazol‐5(4H)‐one) (compound 3 ) and 5‐methyl‐4‐(phenyl(2‐((3‐phenylallylidene)amino)phenylamino)methylene)‐2‐phenyl‐2,4‐dihydro‐pyrazol‐3‐one (compound 4 ) were synthesized by interaction of compound 2 with PMBP and cinnamaldehyde in an ethanolic medium, respectively. The molecular structures of the title compounds were first characterized by single‐crystal X‐ray diffraction, mass spectrometry, and elemental analysis. The title compounds were tested for antibacterial activity (Escherichia coli, Staphylococcus aureus, and Bacillus subtilis) by disk diffusion method.  相似文献   

14.
In the title compound, catena‐poly[[[N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide]chloridozinc(II)]‐μ‐[1,1′‐biphenyl]‐4,4′‐dicarboxylato‐[[N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide]chloridozinc(II)]‐μ‐[N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide]], [Zn2(C14H8O4)Cl2(C26H22N4O2)3]n, the ZnII centre is four‐coordinate and approximately tetrahedral, bonding to one carboxylate O atom from a bidentate bridging dianionic [1,1′‐biphenyl]‐4,4′‐dicarboxylate ligand, to two pyridine N atoms from two N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide ligands and to one chloride ligand. The pyridyl ligands exhibit bidentate bridging and monodentate terminal coordination modes. The bidentate bridging pyridyl ligand and the bridging [1,1′‐biphenyl]‐4,4′‐dicarboxylate ligand both lie on special positions, with inversion centres at the mid‐points of their central C—C bonds. These bridging groups link the ZnII centres into a one‐dimensional tape structure that propagates along the crystallographic b direction. The tapes are interlinked into a two‐dimensional layer in the ab plane through N—H...O hydrogen bonds between the monodentate ligands. In addition, the thermal stability and solid‐state photoluminescence properties of the title compound are reported.  相似文献   

15.
Three related compounds containing a pyrazole moiety with vicinal phenyl rings featuring a methyl­sulfonyl substituent are described, namely 3‐methyl‐1‐[4‐(methyl­sulfonyl)­phenyl]‐5‐phenyl‐1H‐pyrazole, C17H16N2O2S, ethyl 1‐[4‐(methyl­sul­fonyl)­phenyl]‐5‐phenyl‐1H‐pyrazole‐3‐carboxyl­ate, C19H18N2O4S, and 1‐[4‐(methyl­sulfonyl)­phenyl]‐3‐[3‐(morpholino)­phenoxy­methyl]‐5‐phenyl‐1H‐pyrazole, C27H27N3O4S. The design of these compounds was based on celecoxib, a selective cyclo­oxy­genase‐2 (COX‐2) inhibitor, in order to study the influence of various substituents on COX‐2 and 5‐lipoxy­genase (5‐LOX) inhibition.  相似文献   

16.
Quite unlike the reported facile ene reactions on the periphery of many related heterocyclic systems, similarly disposed moieties on the periphery of the chromen‐4‐one (=4H‐1‐benzopyran‐4‐one) system fail to undergo an ene reaction and display a rather unusual preference for an overall [1,5] shift of the allylic C‐atom. Thus, heating xylene solutions of 2‐(N‐allylanilino)‐, 2‐(N‐crotylanilino)‐, and 2‐(N‐cinnamylamino)‐substituted (E)‐(oxochromenyl)propenoates 9a – c and 2‐[allyl(benzyl)amino]‐, 2‐[benzyl(crotyl)amino]‐, and 2‐[benzyl(cinnamyl)amino]‐substituted (E)‐(oxochromenyl)propenoates 16a – c in a sealed tube at 220–230° leads to a [1,5] shift of the allylic moieties (allyl, crotyl, cinnamyl), which is followed by intramolecular cyclization involving the N‐atom and the ester function, to give the 3‐allyl‐3‐crotyl‐, and 3‐cinnamyl‐substituted‐1‐phenyl‐ or 1‐benzyl‐2H‐[1]benzopyrano[2,3‐b]pyridine‐2,5(1H)‐diones 10a – c and 17a – c . The anticipated carbonyl–ene reaction in the 2‐(N‐allylanilino)‐, 2‐(N‐crotylanilino)‐, 2‐(N‐cinnamylanilino)‐, 2‐[allyl(benzyl)amino]‐, 2‐[benzyl(crotyl)amino]‐, and 2‐[benzyl(cinnamyl)amino]‐substituted 4‐oxochromene‐3‐carboxaldehydes 8a – c and 15a – c is also not observed, and these molecules remain untransformed under identical conditions. No [1,5] shifts of benzyl, phenyl, or methyl groups are observed, even in the absence of allylic moieties, though facile [1,5]‐H shift occurs in 2‐(benzylamino)‐ and 2‐(phenylamino)‐substituted (E)‐(oxochromenyl)propenoates 23a , b , which is followed by a similar intramolecular cyclization leading to the 2H‐[1]benzopyrano[2,3‐b]pyridine‐2,5(1H)‐diones 24a , b .  相似文献   

17.
The 1H‐pyrazole‐3‐carboxylic acid 1 was converted via reactions of its acid chloride 3 with various asymmetrical disubstituted urea and alcohol derivatives into the corresponding novel 4‐benzoyl‐N‐(N′,N′‐dialkylcarbamyl)‐1‐(4‐methoxyphenyl)‐5‐phenyl‐1H‐pyrazole‐3‐carboxamide 4a , b and alkyl 4‐benzoyl‐1‐(4‐methoxyphenyl)‐5‐phenyl‐1H‐pyrazole‐3‐carboxylate 7a‐c , respectively, in good yields (57%‐78%). Friedel‐Crafts reactions of 3 with aromatic compouns for 15 min.‐2 h led to the formation of the 4‐3‐diaroyl‐1‐(4‐hydroxyphenyl)‐5‐phenyl‐1H‐pyrazoles 9a‐c , 4‐benzoyl‐1‐(4‐methoxyphenyl)‐3‐aroyl‐5‐phenyl‐1H‐pyrazoles 10a , b and than from the acylation reactions of 9a‐c were obtained the 3,4‐diaroyl‐1‐(4‐acyloxyphenyl)‐5‐phenyl‐1H‐pyrazoles 13a‐d . The structures of all new synthesized compounds were established by NMR experiments such as 1H, and 13C, as well as 2D COSY and IR spectroscopic data, and elemental analyses. All the compounds were evaluated for their antimicrobial activities (agar diffusion method) against eight bacteria and two yeasts.  相似文献   

18.
Condensation of 4‐aminoantipyrine with ethyl acetoacetate, ethyl benzoylacetate, and ethyl cyanoacetate furnished the corresponding ethyl 3‐(1,2‐dihydro‐1,5‐dimethyl‐2‐phenyl‐3‐oxo‐3H‐pyrazol‐4‐yl)aminoacrylate and 2‐cyano‐N‐[(1,2‐dihydro‐1,5‐dimethyl‐2‐phenyl‐3‐oxo‐3H‐pyrazol‐4‐yl)]acetamide derivatives. The aminoacrylates derivatives react with acetonitrile and sodium hydride to give 2‐amino‐6‐methyl‐1‐(1,2‐dihydro‐1,5‐dimethyl‐2‐phenyl‐3‐oxo‐3H‐pyrazol‐4‐yl)‐4‐pyridone. Reaction of the cyanoacetamide derivative with dimethylformamide‐dimethylacetal (DMF‐DMA) afforded 2‐cyano‐N‐[1,2‐dihydro‐1,5‐dimethyl‐2‐phenyl‐3‐oxo‐pyrazol‐4‐yl]‐2‐(N,N‐dimethylamino)methylene acetamide in high yield. Treatment of the latter with 5‐aminopyrazole derivatives afforded the corresponding pyrazolo[2,3‐a]pyrimidines. 2‐cyano‐N‐[(1,2‐dihydro‐1,5‐dimethyl‐2‐phenyl‐3‐oxo‐3H‐pyrazol‐4‐yl)]acetamide also reacts with heterocyclic diazonium salts to give the corresponding pyrazolo[5,1‐c]‐1,2,4‐triazine derivatives. © 2004 Wiley Periodicals, Inc. Heteroatom Chem 15:508–514, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.20046  相似文献   

19.
2,2‐Bis[4(4‐aminophenoxy)phenyl]phthalein‐3′,5′‐bis(trifluoromethyl)anilide (6FADAP), containing fluorine and phthalimide moieties, was synthesized via the Williamson ether condensation reaction from 1‐chloro‐4‐nitrobenzene and phenolphthalein‐3′,5′‐bis(trifluoromethyl)anilide, which was followed by hydrogenation. Monomers such as 2,2‐bis[4(4‐aminophenoxy)phenyl]phthalein‐anilide containing phthalimide groups and 2,2‐bis[4(4‐aminophenoxy)phenyl]phthalein containing only phthalein moieties were also synthesized for comparison. The monomers were first characterized by Fourier transform infrared (FTIR), 1H NMR, 19F NMR, elemental analysis, and titration and were then used to prepare polyimides with 2,2‐bis(3,4‐dicarboxyphenyl)hexafluoropropane dianhydride. The polyimides were designed to have molecular weights of 20,000 g/mol via off‐stoichiometry and were characterized by FTIR, NMR, gel permeation chromatography (GPC), differential scanning calorimetry, and thermogravimetric analysis. Their solubility, water absorption, dielectric constant, and refractive index were also evaluated. The polyimides prepared with 6FADAP, containing fluorine and phthalimide moieties, had excellent solubility in N‐methylpyrrolidinone, N,N‐dimethylacetamide, tetrahydrofuran, CHCl3, tetrachloroethane, and acetone, and GPC analysis showed a molecular weight of 18,700 g/mol. The polyimides also exhibited a high glass‐transition temperature (290 °C), good thermal stability (~500 °C in air), low water absorption (1.9 wt %), a low dielectric constant (2.81), a low refractive index, and low birefringence (0.0041). © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3361–3374, 2003  相似文献   

20.
Eight novel palladium N‐heterocyclic carbene (Pd‐NHC) complexes were synthesized by the reaction of chloro 1,3‐dialkylbenzimidazolin‐2‐ylidene silver(I) complexes with bis(benzonitrile)palladium(II) chloride in dichloromethane. These eight Pd‐NHC complexes are as follows: bis[1‐phenyl‐3‐(2,4,6‐trimethylbenzyl)benzimidazol‐2‐ylidene]dichloropalladium(II), bis[1‐phenyl‐3‐(2,3,5,6‐tetramethylbenzyl)benzimidazol‐2‐ylidene]dichloropalladium(II), bis[1‐phenyl‐3‐(2,3,4,5,6‐pentamethylbenzyl)benzimidazol‐2‐ylidene]dichloropalladium(II), bis[1‐phenyl‐3‐(3,4,5‐trimethoxybenzyl)benzimidazol‐2‐ylidene]dichloropalladium(II), bis[1‐(2‐diethylaminoethyl)‐3‐(3‐methylbenzyl)benzimidazol‐2‐ylidene]dichloropalladium(II), bis[1‐(2‐diethylaminoethyl)‐3‐(2,3,5,6‐tetramethylbenzyl)benzimidazol‐2‐ylidene]dichloropalladium(II), bis[1‐(2‐morpholinoethyl)‐3‐naphthalenomethylbenzimidazol‐2‐ylidene]dichloropalladium(II) and bis[1‐(2‐morpholinoethyl)‐3‐(2‐methylbenzyl)benzimidazol‐2‐ylidene]dichloropalladium(II). Also, these synthesized complexes were fully characterized using Fourier transform infrared, 1H NMR and 13C NMR spectroscopic methods and elemental analysis techniques. These synthesized novel Pd‐NHC complexes were tested as catalysts in the direct arylation of 2‐n‐butylthiophene, 2‐n‐butylfuran and 2‐isopropylthiazole with various aryl bromides at 130°C for 1 h. The complexes showed very good catalytic activities in these reactions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号