首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The steady free convection boundary layer flow of non-Darcy fluid along an isothermal vertical cylinder embedded in a saturated porous medium using the Ergun model has been studied. The partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme developed by Keller. It is found that the heat transfer is strongly affected by the modified Grashof number which characterizes the non-Darcy fluid, and the curvature parameter. Also the heat transfer is found to be more than that of the flat plate.  相似文献   

2.
Double-diffusive natural convection in a fluid saturated porous medium has been investigated using the finite element method. A generalised porous medium model is used to study both Darcy and non-Darcy flow regimes in an axisymmetric cavity. Results indicate that the Darcy number should be a separate parameter to understand flow characteristics in non-Darcy regime. The influence of porosity on heat and mass transfer is significant and the transport rates may differ by 25% or more, at higher Darcy and Rayleigh numbers. When compared with the Darcy and other specialised models of Brinkman and Forchheimer, the present generalised model predicts the least heat and mass transfer rates. It is also observed that an increase in radius ratio leads to higher Nusselt and Sherwood numbers along the inner wall.  相似文献   

3.
Transient non-Darcy free convection between two parallel vertical plates in a fluid saturated porous medium is investigated using the generalized momentum equation proposed by Vafai and Tien. The effects of porous inertia and solid boundary are considered in addition to the Darcy flow resistance. Exact solutions are found for the asymptotic states at small and large times. The large time solutions reveal that the velocity profiles are rather sensitive to the Darcy number Da when Da<1. It has also been found that boundary friction alters the velocity distribution near the wall, considerably. Finite difference calculations have also been carried out to investigate the transient behaviour at the intermediate times in which no similarity solutions are possible. This analytical and numerical study reveals that the transient free convection between the parallel plates may well be described by matching the two distinct asymptotic solutions obtained at small and large times.Nomenclature C empirical constant for the Forchheimer term - f velocity function for the small time solution - F velocity function for the large time solution - g acceleration due to gravity - Gr* micro-scale Grashof number - H a half distance between two infinite plates - K permeability - Nu Nusselt number - Pr Prandtl number - t time - T temperature - u, v Darcian velocity components - x, y Cartesian coordinates - effective thermal diffusivity - coefficient of thermal expansion - porosity - dimensionless time - similarity variable - dimensionless temperature - viscosity - kinematic viscosity - density - the ratio of heat capacities  相似文献   

4.
Boundary-layer analysis is performed for free convection flow over a hot horizontal surface embedded in a porous medium saturated with a gas of variable properties. The variable gas properties are accounted for via the assumption that thermal conductivity and dynamic viscosity are proportional to temperature. A similarity solution is shown to exist for the case of constant surface temperature. Numerical results for the stream function, horizontal velocity, and temperature profiles within the boundary layer as well as for the mass of entrained gas, surface slip velocity, and heat transfer rate at different values of the wall-temperature parameter are presented. Asymptotic solutions for large heating are also available to support the numerical work.  相似文献   

5.
The weakly nonlinear stability of the triple diffusive convection in a Maxwell fluid saturated porous layer is investigated. In some cases, disconnected oscillatory neutral curves are found to exist, indicating that three critical thermal Darcy-Rayleigh numbers are required to specify the linear instability criteria. However, another distinguishing feature predicted from that of Newtonian fluids is the impossibility of quasi-periodic bifurcation from the rest state. Besides, the co-dimensional two bifurcation points are located in the Darcy-Prandtl number and the stress relaxation parameter plane. It is observed that the value of the stress relaxation parameter defining the crossover between stationary and oscillatory bifurcations decreases when the Darcy-Prandtl number increases. A cubic Landau equation is derived based on the weakly nonlinear stability analysis. It is found that the bifurcating oscillatory solution is either supercritical or subcritical, depending on the choice of the physical parameters. Heat and mass transfers are estimated in terms of time and area-averaged Nusselt numbers.  相似文献   

6.
A novel Liapunov functional was used in previous work to establish nonlinear stability of certain nontrivial equilibrium states; essentially the context was that of pure nonlinear diffusion. This paper uses the same Liapunov functional to derive a nonlinear stability criterion in the context of a highly nonlinear system of p.d.e.'s involving nonlinear diffusion as an element. The context is that of convection of a thermofluid (i) conforming to Darcy's law and the Boussinesq approximation, (ii) with temperature dependent thermal diffusivity and viscosity, in an infinite vertical slab of porous material. The vertical faces are held at different constant temperatures, a steady state is identified, and is shown to be nonlinearly stable provided that the Rayleigh number does not exceed a quantity which reflects the temperature dependence of the pertinent physical properties. It may be that the versatility of the Liapunov functional thus exhibited may extend to other nonlinear systems involving nonlinear diffusion. Received September 4, 1998  相似文献   

7.
This paper presents a theoretical and numerical investigation of the natural convection boundary-layer along a vertical surface, which is embedded in a porous medium, when the surface heat flux varies as (1 +x 2)), where is a constant andx is the distance along the surface. It is shown that for > -1/2 the solution develops from a similarity solution which is valid for small values ofx to one which is valid for large values ofx. However, when -1/2 no similarity solutions exist for large values ofx and it is found that there are two cases to consider, namely < -1/2 and = -1/2. The wall temperature and the velocity at large distances along the plate are determined for a range of values of .Notation g Gravitational acceleration - k Thermal conductivity of the saturated porous medium - K Permeability of the porous medium - l Typical streamwise length - q w Uniform heat flux on the wall - Ra Rayleigh number, =gK(q w /k)l/(v) - T Temperature - Too Temperature far from the plate - u, v Components of seepage velocity in the x and y directions - x, y Cartesian coordinates - Thermal diffusivity of the fluid saturated porous medium - The coefficient of thermal expansion - An undetermined constant - Porosity of the porous medium - Similarity variable, =y(1+x ) /3/x 1/3 - A preassigned constant - Kinematic viscosity - Nondimensional temperature, =(T – T )Ra1/3 k/qw - Similarity variable, = =y(loge x)1/3/x 2/3 - Similarity variable, =y/x 2/3 - Stream function  相似文献   

8.
An analytical study is made to examine the flow behaviour of a fully developed transient free-convective flow of an incompressible viscous fluid between two heated vertical walls in a porous system. A Laplace transform technique has been employed to obtain the expression for velocity, temperature and skin-friction. The influence of the various parameters, entering into the problem, on the velocity field and skin-friction is discussed in detail. Received on 11 March 1997  相似文献   

9.
The nonlinear stability of thermal convection in a layer of an Oldroyd-B fluid-saturated Darcy porous medium with anisotropic permeability and thermal diffusivity is investigated with the perturbation method. A modified Darcy-Oldroyd model is used to describe the flow in a layer of an anisotropic porous medium. The results of the linear instability theory are delineated. The thresholds for the stationary and oscillatory convection boundaries are established, and the crossover boundary between them is demarcated by identifying a codimension-two point in the viscoelastic parameter plane. The stability of the stationary and oscillatory bifurcating solutions is analyzed by deriving the cubic Landau equations. It shows that these solutions always bifurcate supercritically. The heat transfer is estimated in terms of the Nusselt number for the stationary and oscillatory modes. The result shows that, when the ratio of the thermal to mechanical anisotropy parameters increases, the heat transfer decreases.  相似文献   

10.
11.
The onset of buoyancy-driven convection in an initially quiescent ferrofluid saturated horizontal porous layer in the presence of a uniform vertical magnetic field is investigated. The Brinkman-Lapwood extended Darcy equation with fluid viscosity different from effective viscosity is used to describe the flow in the porous medium. The lower boundary of the porous layer is assumed to be rigid-paramagnetic, while the upper paramagnetic boundary is considered to be either rigid or stress-free. The thermal conditions include fixed heat flux at the lower boundary, and a general convective–radiative exchange at the upper boundary, which encompasses fixed temperature and fixed heat flux as particular cases. The resulting eigenvalue problem is solved numerically using the Galerkin technique. It is found that increase in the Biot number Bi, porous parameter σ, viscosity ratio Λ, magnetic susceptibility χ, and decrease in the magnetic number M 1 and non-linearity of magnetization M 3 is to delay the onset of ferroconvection in a porous medium. Further, increase in M 1, M 3, and decrease in χ, Λ, σ and Bi is to decrease the size of convection cells.  相似文献   

12.
A non-similar boundary layer analysis is presented to study the flow, heat and mass transfer characteristics of non-Darcian mixed convection of a non-Newtonian fluid from a vertical isothermal plate embedded in a homogeneous porous medium with the effect of Soret and Dufour and in the presence of either surface injection or suction. The value of the mixed-convection parameter lies between 0 and 1. In addition, the power-law model is used for non-Newtonian fluids with exponent n < 1 for pseudoplastics n = 1 for Newtonian fluids and n > 1 for dilatant fluids. Furthermore, the coordinates and dependent variables are transformed to yield computationally efficient numerical solutions that are valid over the entire range of mixed convection, from the pure forced-convection limit to the pure free-convection limit, and the whole domain of non-Newtonian fluids, from pseudoplastics to dilatant fluids. The numerical solution of the problem is derived using a Runge–Kutta integration scheme with Newton–Raphson shooting technique. Distributions for velocity, temperature and concentration, as well as for the rate of wall heat and mass transfer, have been obtained and discussed for various physical parametric values.  相似文献   

13.
The mixed convection flow due to a line thermal source embedded at the leading edge of an adiabatic vertical plane surface immersed in a saturated porous medium has been studied. Both weakly and strongly buoyant plume regimes have been considered. The cases of buoyancy assisting and buoyancy opposing flow conditions have been incorporated in the analysis. The results are presented for the entire range of buoyancy parameter from the pure forced convection (ξ=0) to the pure free convection (ξ → ∞@#@) regimes. For buoyancy-assisting flow, the wall temperature and the velocity at the wall increase as the plume strength increases. However, they all decrease as the free-stream velocity increases. For buoyancyopposing flow, the temperature at the wall increases as the strength of the plume increases but velocity at the wall decreases.  相似文献   

14.
A detailed numerical study has been performed to investigate transient natural convection heat and mass transfer in a porous enclosure. Major dimensionless groups governing the present problem areRa,N,Le, φ andAr. Results are particular presented to illustrate the effects of the combined thermal and solutal buoyancy forces on the temporal evolution of local/average Nusselt and Sherwood numbers. The results show that with the increase in the Rayleigh number, the heat and mass transfer is enhanced as a result of greater buoyancy effect. Additionally, the increase in buoyancy ratioN results in an improvement in the heat and mass transfer rates and in the mean time causes a short time duration for the flow to approach the steady-state condition.  相似文献   

15.
Boundary layer analysis is performed for free convection in a saturated porous medium adjacent to non-isothermal vertical impermeable surfaces. The impermeable surface temperature is assumed to be an arbitrary function of the distance along the surface. The solutions are obtained in the form of perturbations to the isothermal case. Using the differentials of the wall temperature, which are functions of distance along the surface, as perturbation elements, universal functions are derived. These universal functions can be used to estimate the heat transfer to any type of wall temperature variation. Solutions for some specialized wall temperature variations are derived using these universal functions and are compared with the solutions that are available in the literature. The agreement is found to be good. The case of uniform wall heat flux turns out to be a special case of non-isothermal wall solution.Es wurde eine Untersuchung der Grenzschicht bei freier Konvektion in einem gesättigten porösen Medium, das an eine nicht isotherme undurchlässige Oberfläche angrenzt, durchgeführt. Die Temperatur der undurchlässigen Oberfläche wurde als beliebige Ortsfunktion der Oberfläche angenommen. Lösungen werden in Form von Störungen des isothermen Falles erhalten. Unter Benutzung der Differentiale der Wandtemperatur, welche Ortsfunktionen der Oberfläche sind, werden als Störfunktion universelle Funktionen erhalten. Diese universellen Funktionen können benutzt werden, um die Wärmeübertragung für beliebige Variationen der Wandtemperatur zu bestimmen. Für einige spezielle Wandtemperaturen werden Lösungen unter Benutzung dieser universellen Funktionen abgeleitet und mit Lösungen aus der Literatur verglichen; gute Übereinstimmung kann festgestellt werden. Der Fall der einheitlichen Wandwärmestromdichte stellt sich als Spezialfall der nicht isothermen Lösung heraus.  相似文献   

16.
We examine the combined effect of spatially stationary surface waves and the presence of fluid inertia on the free convection induced by a vertical heated surface embedded in a fluid-saturated porous medium. We consider the boundary-layer regime where the Darcy-Rayleigh number, Ra, is very large, and assume that the surface waves have O(1) amplitude and wavelength. The resulting boundary-layer equations are found to be nonsimilar only when the surface is nonuniform and inertia effects are present; self-similarity results when either or both effects are absent. Detailed results for the local and global rates of heat transfer are presented for a range of values of the inertia parameter and the surface wave amplitude.  相似文献   

17.
This paper analyses steady two-dimensional mixed convection of an imcompressible viscous fluid in a porous medium past a hot vertical plate. Assuming Darcy-Brinkman model for the flow in a porous medium, the boundary layer equations are integrated numerically to obtain the non-similar solution for the velocity and temperature distribution for several values of the permeability and viscous dissipation parameters. It is shown that for a fixed value of Prandtl number Pr and dissipation parameter E, the skin-friction at the plate decreases with increase in the permeability parameter K1. However for the same value or Pr and E, the heat transfer rate at the plate increases with increasing K1. The dimensionlcss velocity and temperature functions in the flow are plotted for several values of E and K1 with Pr = 0.73. It is also shown that for fixed values of K1, and KPr, the skin-friction increases with increase in the dissipation parameter E.  相似文献   

18.
19.
The present article considers a numerical study of thermal dispersion effect on the non-Darcy natural convection over a vertical flat plate in a fluid saturated porous medium. Forchheimer extension is considered in the flow equations. The coefficient of thermal diffusivity has been assumed to be the sum of molecular diffusivity and the dispersion thermal diffusivity due to mechanical dispersion. The non-dimensional governing equations are solved by the finite element method (FEM) with a Newton–Raphson solver. Numerical results for the details of the stream function, velocity and temperature contours and profiles as well as heat transfer rates in terms of Nusselt number are obtained. The study shows that the increase in thermal dispersion coefficient of the porous medium results in more heat energy to disperse away in the normal direction to the wall. This induces more fluid to flow along the wall, enhancing the heat transfer coefficient particularly near the wall.  相似文献   

20.
This paper analyzes the variable viscosity effects on non-Darcy free or mixed convection flow on a vertical surface in a fluid saturated porous medium. The viscosity of the fluid is assumed to be a inverse linear function of temperature. Velocity and heat transfer are found to be significantly affected by the variable viscosity parameter, Ergun number, Peclet number or Rayleigh number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号