首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
王宇  谷月  李昌  韩清鹏 《力学与实践》2015,37(3):344-349
基于薄壳理论和黏弹性理论, 得出了黏弹性层合悬臂薄壁圆柱壳模态特性的半解析解. 根据乐甫薄壳理论, 建立了基层和黏弹性阻尼层薄壁圆柱壳的一阶状态微分方程, 结合黏弹性阻尼层的变形协调关系和层间作用力关系, 利用传递矩阵法得出了整体结构的传递矩阵, 采用高精度的精细积分法得出了固有频率、模态损耗因子和三维模态振型, 最后通过有限元法进行了比较, 通过算例验证了传递矩阵法对黏弹性层合薄壁圆柱壳模态特性研究的有效性.  相似文献   

2.
A general approach, based on shearable shell theory, to predict the influence of geometric non-linearities on the natural frequencies of an elastic anisotropic laminated cylindrical shell incorporating large displacements and rotations is presented in this paper. The effects of shear deformations and rotary inertia are taken into account in the equations of motion. The hybrid finite element approach and shearable shell theory are used to determine the shape function matrix. The analytical solution is divided into two parts. In part one, the displacement functions are obtained by the exact solution of the equilibrium equations of a cylindrical shell based on shearable shell theory instead of the usually used and more arbitrary interpolating polynomials. The mass and linear stiffness matrices are derived by exact analytical integration. In part two, the modal coefficients are obtained, using Green's exact strain-displacement relations, for these displacement functions. The second- and third-order non-linear stiffness matrices are then calculated by precise analytical integration and superimposed on the linear part of equations to establish the non-linear modal equations. Comparison with available results is satisfactorily good.  相似文献   

3.
In this paper, the governing equations for non-linear free vibration of truncated, thin, laminated, orthotropic conical shells using the theory of large deformations with the Karman-Donnell-type of kinematic nonlinearity are derived. Applying superposition principle and Galerkin’s method, these equations are reduced to a time dependent non-linear differential equation. The frequency-amplitude relationship for the laminated orthotropic thin truncated conical shell is obtained using the method of weighted residuals. In the particular case, we can obtain the similar relationships for the single-layer and laminated orthotropic cylindrical shells, also. The influence played by geometrical parameters of the conical shell and physical parameters of the laminate (i.e. material properties, staking sequences and number of layers) on the non-linear vibration behavior of the conical shell is examined. It is noticed that the non-linear vibration of shells is highly dependent on laminate characteristics and, from these observations, it is concluded that specific configurations of laminates should be designed for each kind of application. Present results are compared with available data for special cases.  相似文献   

4.
In this paper a set of stability equations for thick cylindrical shells is derived and solved analytically. The set is obtained by integration of the differential stability equations across the thickness of the shell. The effects of transverse shear and the non-linear variation of the stresses and displacements are accounted for with the aid of the higher order shell theory proposed by [Voyiadjis, G.Z. and Shi, G., 1991, A refined two-dimensional theory for thick cylindrical shells, International Journal of Solids and Structures, 27(3), 261–282.]. For a thick shell under external hydrostatic pressure, the stability equations are solved analytically and yield an improved expression for the buckling load. Reference solutions are also obtained by solving numerically the differential stability equations. Both the full set that contains strains and rotations as well as the simplified set that contains rotations only were solved numerically. The relative magnitude of shear strain and rotation was examined and the effect of thickness was quantified. Differences between the benchmark solutions and the analytic expressions based on the refined theory and the classical shell theory are analysed and discussed. It is shown that the new analytic expression provides significantly improved predictions compared to the formula based on thin shell theory.  相似文献   

5.
Syntactic foams are particulate composites that are obtained by dispersing thin hollow inclusions in a matrix material. The wide spectrum of applications of these composites in naval and aerospace structures has fostered a multitude of theoretical, numerical, and experimental studies on the mechanical behavior of syntactic foams and their constituents. In this work, we study static and dynamic axisymmetric buckling of single hollow spherical particles modeled as non-linear thin shells. Specifically, we compare theoretical predictions obtained by using Donnell, Sanders–Koiter, and Teng–Hong non-linear shell theories. The equations of motion of the particle are obtained from Hamilton׳s principle, and the Galerkin method is used to formulate a tractable non-linear system of coupled ordinary differential equations. An iterative solution procedure based on the modified Newton–Raphson method is developed to estimate the critical static load of the microballoon, and alternative methodologies of reduced complexity are further discussed. For dynamic buckling analysis, a Newmark-type integration scheme is integrated with the modified Newton–Raphson method to evaluate the transient response of the shell. Results are specialized to glass particles, and a parametric study is conducted to investigate the effect of microballoon wall thickness on the predictions of the selected non-linear shell theories. Comparison with finite element predictions demonstrates that Sanders–Koiter theory provides accurate estimates of the static critical load for a wide set of particle wall thicknesses. On the other hand, Donnell and Teng–Hong theories should be considered valid only for very thin particles, with the latter theory generally providing better agreement with finite element findings due to its more complete kinematics. In this context, we also demonstrate that a full non-linear analysis is required when considering thicker shells, while simplified treatment can be utilized for thin particles. For dynamic buckling, we confirm the accuracy of Sanders–Koiter theory for all the considered particle thicknesses and of Teng–Hong and Donnell theories for very thin particles.  相似文献   

6.
7.
This paper is devoted to the derivation and the analysis of vibrations of shallow spherical shell subjected to large amplitude transverse displacement. The analog for thin shallow shells of von Kármán’s theory for large deflection of plates is used. The validity range of the approximations is assessed by comparing the analytical modal analysis with a numerical solution. The specific case of a free edge is considered. The governing partial differential equations are expanded onto the natural modes of vibration of the shell. The problem is replaced by an infinite set of coupled second-order differential equations with quadratic and cubic non-linear terms. Analytical expressions of the non-linear coefficients are derived and a number of them are found to vanish, as a consequence of the symmetry of revolution of the structure. Then, for all the possible internal resonances, a number of rules are deduced, thus predicting the activation of the energy exchanges between the involved modes. Finally, a specific mode coupling due to a 1:1:2 internal resonance between two companion modes and an axisymmetric mode is studied.  相似文献   

8.
Theoretical and experimental non-linear vibrations of thin rectangular plates and curved panels subjected to out-of-plane harmonic excitation are investigated. Experiments have been performed on isotropic and laminated sandwich plates and panels with supported and free boundary conditions. A sophisticated measuring technique has been developed to characterize the non-linear behavior experimentally by using a Laser Doppler Vibrometer and a stepped-sine testing procedure. The theoretical approach is based on Donnell's non-linear shell theory (since the tested plates are very thin) but retaining in-plane inertia, taking into account the effect of geometric imperfections. A unified energy approach has been utilized to obtain the discretized non-linear equations of motion by using the linear natural modes of vibration. Moreover, a pseudo arc-length continuation and collocation scheme has been used to obtain the periodic solutions and perform bifurcation analysis. Comparisons between numerical simulations and the experiments show good qualitative and quantitative agreement. It is found that, in order to simulate large-amplitude vibrations, a damping value much larger than the linear modal damping should be considered. This indicates a very large and non-linear increase of damping with the increase of the excitation and vibration amplitude for plates and curved panels with different shape, boundary conditions and materials.  相似文献   

9.
We show how to determine the midsurface of a deformed thin shell from the following set of data: known geometry of the undeformed midsurface, the surface strains and the surface bendings. It is assumed that the two latter fields had been obtained beforehand by solving a problem posed for the so-called intrinsic field equations of the non-linear theory of thin shells. Two different methods of determining the deformed midsurface in space are worked out: (a) directly from its first and second fundamental form using some results from mathematical analysis; (b) integrating the system of first-order PDEs for the surface deformation gradient. In both cases the corresponding integrability conditions are discussed; it is shown that they are equivalent to the compatibility conditions of the non-linear theory of thin shells.  相似文献   

10.
Using Donnell non-linear shallow shell equations in terms of the displacements and the potential flow theory, this work presents a qualitatively accurate low dimensional model to study the non-linear dynamic behavior and stability of a fluid-filled cylindrical shell under lateral pressure and axial loading. First, the reduced order model is derived taking into account the influence of the driven and companion modes. For this, a modal solution is obtained by a perturbation technique which satisfies exactly the in-plane equilibrium equations and all boundary, continuity, and symmetry conditions. Finally, the equation of motion in the transversal direction is discretized by the Galerkin method. The importance of each mode in the proposed modal expansion is studied using the proper orthogonal decomposition. The quality of the proposed model is corroborated by studying the convergence of frequency–amplitude relations, resonance curves, bifurcation diagrams, and time responses. The parametric analysis clarifies the influence of the lateral and axial loads on the non-linear vibrations and stability of the liquid-filled shell. Finally, the global response of the system is investigated in order to quantify the degree of safety of the shell in the presence of external perturbations through the use of bifurcation diagrams and basins of attraction. This allows one to evaluate the safety and dynamic integrity of the cylindrical shell in a dynamic environment.  相似文献   

11.
The effect of small initial deviations from the ideal circular shape of a shell on the frequencies and modes of flexural eigenvibrations is studied with the use of the linear theory of thin shallow shells. It is assumed that the initial deviations are responsible for interaction between flexural and radial vibrations of the shell. The modal equations are derived by the Bubnov—Galerkin method. It is shown that the initial deviations from the ideal circular shape split the flexural vibration spectrum, and the fundamental frequency decreases compared to that of the ideal shell.  相似文献   

12.
The extensive use of circular cylindrical shells in modern industrial applications has made their analysis an important research area in applied mechanics. In spite of a large number of papers on cylindrical shells, just a small number of these works is related to the analysis of orthotropic shells. However several modern and natural materials display orthotropic properties and also densely stiffened cylindrical shells can be treated as equivalent uniform orthotropic shells. In this work, the influence of both material properties and geometry on the non-linear vibrations and dynamic instability of an empty simply supported orthotropic circular cylindrical shell subjected to lateral time-dependent load is studied. Donnell׳s non-linear shallow shell theory is used to model the shell and a modal solution with six degrees of freedom is used to describe the lateral displacements of the shell. The Galerkin method is applied to derive the set of coupled non-linear ordinary differential equations of motion which are, in turn, solved by the Runge–Kutta method. The obtained results show that the material properties and geometric relations have a significant influence on the instability loads and resonance curves of the orthotropic shell.  相似文献   

13.
The non-linear theory of thin shell structures with irregularities of geometry, material properties, loading and deformation is developed. The irregular shell is modelled by a reference network being a union of piecewise smooth surfaces and curves, with various fields satisfying relaxed regularity requirements. By transforming the virtual work principle postulated for the entire reference network, we derive the corresponding local field equations and side conditions. Particular attention is paid to formulate the general form of static and kinematic jump conditions at singular geometric and physical curves. Several special kinds of irregularities are considered and some particular forms of the jump conditions are discussed.  相似文献   

14.
This paper discusses the derivation of discrete low-dimensional models for the non-linear vibration analysis of thin shells. In order to understand the peculiarities inherent to this class of structural problems, the non-linear vibrations and dynamic stability of a circular cylindrical shell subjected to dynamic axial loads are analyzed. This choice is based on the fact that cylindrical shells exhibit a highly non-linear behavior under both static and dynamic axial loads. Geometric non-linearities due to finite-amplitude shell motions are considered by using Donnell’s nonlinear shallow shell theory. A perturbation procedure, validated in previous studies, is used to derive a general expression for the non-linear vibration modes and the discretized equations of motion are obtained by the Galerkin method. The responses of several low-dimensional models are compared. These are used to study the influence of the modelling on the convergence of critical loads, bifurcation diagrams, attractors and large amplitude responses of the shell. It is shown that rather low-dimensional and properly selected models can describe with good accuracy the response of the shell up to very large vibration amplitudes.  相似文献   

15.
本文利用渐近迭代法获得了边界弹性支撑的功能梯度扁球壳的非线性屈曲问题的理论解.假设材料组分体积分数沿壳体厚度方向呈sigmoid幂函数变化,边界上考虑一般的弹性支撑约束.基于经典的薄壳理论和几何非线性关系,导出了S型功能梯度扁球壳的非线性屈曲问题的控制方程.采用渐近迭代法通过两次迭代得到了无量纲挠度和均布荷载之间的非线性特征关系.通过与已有有限元方法和其他数值方法的结果对比,验证了本文解的有效性和高精度.同时,通过计算阐述了缺陷因子、材料参数、边界约束系数及特征几何参数对壳体临界屈曲荷载的影响.  相似文献   

16.
The effect of a small added mass on the frequency and shape of free vibrations of a thin shell is studied using shallow shell theory. The proposed mathematical model assumes that mass asymmetry even in a linear formulation leads to coupled radial flexural vibrations. The interaction of shape-generating waves is studied using modal equations obtained by the Bubnov–Galerkin method. Splitting of the flexural frequency spectrum is found, which is caused not only by the added mass but also by the wave-formation parameters of the shell. The ranges of the relative lengths and shell thicknesses are determined in which the interaction of flexural and radial vibrations can be neglected.  相似文献   

17.
In this paper, we present a new Fourier-related double scale analysis to study instability phenomena of sandwich structures. By using the technique of slowly variable Fourier coefficients, a zig–zag theory based microscopical sandwich model is transformed into a macroscopical one that offers three numerical advantages. Firstly, only the envelopes of instability patterns are evaluated and this leads to a significant improvement on computational efficiency, especially when dealing with high wavenumber wrinkling phenomena. Secondly, the proposed macroscopical model allows one to select modal wavelength, which makes easy to control non-linear calculations. Thirdly, in contrast to Landau–Ginzburg envelope equations, it may also remain valid away from the bifurcation point and the coupling between global and local instabilities can be accounted for. The established non-linear system is solved by asymptotic numerical method (ANM), which is more reliable and less time consuming than other iterative classical methods. The proposed double scale analysis yields accurate results with a significant reduced computational cost.  相似文献   

18.
The non-linear free and forced vibrations of simply supported thin circular cylindrical shells are investigated using Lagrange's equations and an improved transverse displacement expansion. The purpose of this approach was to provide engineers and designers with an easy method for determining the shell non-linear mode shapes, with their corresponding amplitude dependent non-linear frequencies. The Donnell non-linear shell theory has been used and the flexural deformations at large vibration amplitudes have been taken into account. The transverse displacement expansion has been made using two terms including both the driven and the axisymmetric modes, and satisfying the simply supported boundary conditions. The non-linear dynamic variational problem obtained by applying Lagrange's equations was then transformed into a static case by adopting the harmonic balance method. Minimisation of the energy functional with respect to the basic function contribution coefficients has led to a simple non-linear multi-modal equation, the solution of which gives in the case of a single mode assumption an expression for the non-linear frequencies which is much simpler than that derived from the non-linear partial differential equation obtained previously by several authors. Quantitative results based on the present approach have been computed and compared with experimental data. The good agreement found was very satisfactory, in comparison with previous old and recent theoretical approaches, based on sophisticated numerical methods, such as the finite element method (FEM), the method of normal forms (MNF), and analytical methods, such as the perturbation method.  相似文献   

19.
In this paper, the influence of an exponential volume fraction law on the vibration frequencies of thin functionally graded cylindrical shells is studied. Material properties in the shell thickness direction are graded in accordance with the exponential law. Expressions for the strain-displacement and curvature-displacement relationships are taken from Love's thin shell theory. The Rayleigh-Ritz approach is used to derive the shell eigenfrequency equation. Axial modal dependence is assumed in the characteristic beam functions. Natural frequencies of the shells are observed to be dependent on the constituent volume fractions. The results are compared with those available in the literature for the validity of the present methodology.  相似文献   

20.
It is well known that distribution of displacements through the shell thickness is non-linear, in general. We introduce a modified polar decomposition of shell deformation gradient and a vector of deviation from the linear displacement distribution. When strains are assumed to be small, this allows one to propose an explicit definition of the drilling couples which is proportional to tangential components of the deviation vector. The consistent second approximation to the complementary energy density of the geometrically non-linear theory of isotropic elastic shells is constructed. From differentiation of the density we obtain the consistently refined constitutive equations for 2D surface stretch and bending measures. These equations are then inverted for 2D stress resultants and stress couples. The second-order terms in these constitutive equations take consistent account of influence of undeformed midsurface curvatures. The drilling couples are explicitly expressed by the stress couples, undeformed midsurface curvatures, and amplitudes of quadratic part of displacement distribution through the thickness. The drilling couples are shown to be much smaller than the stress couples, and their influence on the stress and strain state of the shell is negligible. However, such very small drilling couples have to be admitted in non-linear analyses of irregular multi-shell structures, e.g. shells with branches, intersections, or technological junctions. In such shell problems six 2D couple resultants are required to preserve the structure of the resultant shell theory at the junctions during entire deformation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号