首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
应用原位漫反射红外-质谱联用、程序升温和暂态响应技术研究了CuO/Al2O3催化剂表面酸性及其反应性能. 实验结果表明, CuO/Al2O3催化剂表面呈Lewis酸性, 硫化不仅可增强CuO/Al2O3催化剂的Lewis酸性, 而且可产生新的Brønsted酸性位; 吸附于Lewis酸性位的NH3具有选择性催化还原(SCR)活性. 而在硫化样Cu8(400S)中Lewis和Brønsted酸性位同时存在的情况下, 吸附于Lewis和Brønsted酸性位的氨均具有SCR活性, 且后者较前者弱; CuO/Al2O3催化剂上的SCR反应遵循Eley-Rideal机理, 即SCR反应发生于吸附态NH3与气相NO之间.  相似文献   

2.
By precipitation with ammonia of ethanolic solutions containing the appropriate proportions of gallium and aluminium nitrate, following by calcination of the resulting gels at 773 K, mixed Ga2O3/Al2O3 oxides having Ga:Al ratios of 9:1, 4:1, 1:1, 1:4 and 1:9 were obtained. Powder X‐ray diffraction showed that these mixed metal oxides form a series of solid solutions having the spinel‐type structure; also shown by γ‐Al2O3 and γ‐Ga2O3. The specific surface area (determined by nitrogen adsorption at 77 K) was found to range from 160 m2 g?1 for the mixed oxide having Ga:Al = 9:1 up to 370 m2 g?1 for that having Ga:Al = 1:9. High resolution MAS NMR showed that Ga3+ and Al3+ ions occur at both tetrahedral and octahedral sites in the spinel‐type structure of the mixed metal oxides, although there is a preferential occupation of tetrahedral sites by Ga3+ ions. A proportion of penta‐coordinated Al3+ ions was also found. IR spectra of carbon monoxide adsorbed at 77 K showed that the mixed metal oxides have a considerable Lewis acidity, related mainly to tetrahedrally coordinated metal ions exposed at crystal surfaces. The characteristic infrared absorption band of coordinated (adsorbed) CO appears in the range 2205–2190 cm?1, and its peak wavenumber is nearly independent of Ga:Al ratio in the mixed gallia‐alumina oxides.  相似文献   

3.
Paramagnetic complexes of 9, 10-anthraquinone and 9-fluorenone adsorbed on the surface of calcium, magnesium, zinc, zirconium, and aluminum oxides and modified Al2O3 as well as on mixed oxides were studied by ESR and electron-nuclear double resonance. Radical anions that do not interact with Lewis acid sites are generated on the surfaces of oxides with electrondonating properties (CaO, MgO). Paramagnetic complexes of the anthraquinone or fluorenone radical anion with Lewis acid sites (coordinatively unsaturated metal cations) are formed in other cases. Several types of similar complexes can be formed. Mechanisms of interaction of the probe molecules with the metal oxide surface were proposed.  相似文献   

4.
Adsorption of ammonia and nitrogen oxide on V2O5/Al2O3 samples of different degrees of reduction has been studied by IR spectroscopy. On an oxidized surface, ammonia is coordinated by V3+ and V4+ ions to form ammonium ions; NO is not adsorbed. On a reduced surface, the coordination of NO by V3+, V4+, and V5+ ions is observed, which results in the formation of nitrosyl complexes. A strong mutual influence between NO and NH3 occurs during coadsorption or consecutive interaction on a reduced catalyst surface.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 236–241, February, 1994.  相似文献   

5.
Solid‐state NMR spectroscopy of selected phosphine oxides adsorbed on silica surfaces establishes the surface mobilities, even of phosphine oxides with high melting points. Crystal structures of the adducts Ph3PO ? HOSiPh3 and Cy3PO ? H2O indicate that the interactions with silica involve hydrogen bonding of the P?O group to adsorbed water and surface silanol groups.  相似文献   

6.
The mesostructured silica SBA-15, γ-Al2O3, and amorphous silica-alumina are modified with Ni(acac)2 in the liquid and gas phases. This process depends crucially on the nature of active sites on the support surface. In the modification of materials containing weakly acidic or weakly basic hydroxyl groups, it is necessary to use low-polarity solvents. The dominant Ni(acac)2 chemisorption sites on amorphous silica-alumina are the acid hydroxyls of ≡Si-OH-Al= bridges. The covalent bonding resulting from the replacement of the acetylacetonate ligand favors the fixation of the adsorbed complex on the support surface. The coordinatively unsaturated sites formed by Al3+ ions play an insignificant role in Ni(acac)2 chemisorption. The degree of dispersion of the oxide phase in the resulting catalysts depends strongly on the strength of the interaction between the modifier molecules and the active sites of the support. This is not the case with the aluminum acetylacetonate complexes that form upon the modification of the Al-containing supports. Gas-phase modification affords finer NiO particles than liquid-phase modification.  相似文献   

7.
Studies on Nickel Oxide Mixed Catalysts. XV. Surface Chemical Properties of NiO/Al2O3-SiO2 Catalysts Surface chemical properties of precipitated NiO/Al2O3? SiO2 catalysts different compositions and the corresponding Al2O3? SiO2 carriers have been investigated. Infrared spectroscopic measurements (before and after adsorption of pyridine and ammonia), 1H-n.m.r. and ammonia adsorption measurements showed that the number of the Lewis-acidic sites are increased mainly by incorporation of the nickel component on the X-ray amorphous Al2O3? SiO2 carriers, whereas the number of the hydroxide groups do not change significantly. With growing alumina content the number and the strength of the Lewis-acidic sites are increased where the part of the NiII surface sites decreases and those of the AlIII surface sites increases. Brönsted-acidic sites are detectable at high alumina contents.  相似文献   

8.
Photoredox catalysis provides opportunities in harnessing clean and green resources such as sunlight and O2, while the acid and base surface sites of metal oxides are critical for industrial catalysis such as oil cracking. The contribution of metal oxide surfaces towards photocatalytic aerobic reactions was elucidated, as demonstrated through the hydroxylation of boronic acids to alcohols. The strength and proximity of the surface base sites appeared to be two key factors in driving the reaction; basic and amphoteric oxides such as MgO, TiO2, ZnO, and Al2O3 enabled high alcohol yields, while acidic oxides such as SiO2 and B2O3 gave only low yields. The reaction is tunable to different irradiation sources by merely selecting photosensitizers of compatible excitation wavelengths. Such surface complexation mechanisms between reactants and earth abundant materials can be effectively utilized to achieve a wider range of photoredox reactions.  相似文献   

9.
Catalytic transfer hydrogenation of 2-butanone with 2-propanol was studied in gas phase over a series of oxides of different acid-base properties. Although the basic oxides (MgO, La2O3) gave high initial conversions, these oxides underwent deactivation during the reaction. This deactivation could be partially prevented by a previous treatment with chloroform of the oxide. The amphoteric oxides (TiO2, ZrO2, Al2O3) were also active in this reaction. Increasing the acidic character of the catalyst (Nb2O5, WO3) led to a pronounced dehydration of 2-propanol. The results obtained over a series of rare earth oxides (La2O3, Sm2O3, Gd2O3, Dy2O3, Er2O3) revealed that beside the role of basic and acid sites a correlation seems to exist between the number of unpaired electrons of the metal ion and the catalytic activity, indicating the role of one electron donor sites.  相似文献   

10.
The preparation, characterization and ammonia and water adsorption properties of edge-rich carbon nanofibers (CNFs) were studied, including platelet CNFs (PCNFs) and cup-stacked CNFs (CSCNFs). Since PCNFs and CSCNFs have many chemically active exposed edges, functionalization by oxidizing the edges was carried out by ozone stream and by nitric acid. Transmission electron microscopy, N2 adsorption isotherms and temperature-programmed desorption analysis showed that the nitric acid treatment partly destroyed the graphite structure of the PCNFs and created acid functional groups and micropores, whereas the ozone treatment created functional groups without damaging the structure. Ammonia adsorption isotherms clarified that NH3 adsorption on PCNFs and CSCNFs occurred mainly on oxygen-containing groups, whereas the adsorption on activated carbon fibers (ACFs) occurred on both oxygen-containing groups and the carbon surface without the functional groups, and the CSCNFs showed larger amounts of adsorbed ammonia compared to the PCNFs. Especially at a relatively low pressure range (<0.2 atm), the PCNFs/CSCNFs/ACFs showed the same ammonia adsorption mechanism; that is, the one-to-one interaction between oxygen atoms in the functional groups and hydrogen atoms in ammonia molecules. In addition, the adsorption on the ACFs appeared to occur mainly by interaction with the carbon surface at relatively high pressure (0.3–1.0 atm). Our experimental results and previous findings suggest that NH3 adsorption on PCNFs is due mainly to NH…O hydrogen bonding between oxygen-containing groups and ammonia rather than to chemical bonding.  相似文献   

11.
The active phase of the NiMo/Al2O3 catalyst for hydrodesulfurization reactions has been investigated in this work. Special attention has been focused on the effect of the order of metal impregnation on the formation of the active phase in the reaction. The Mo and Ni oxides and their sulfides on the alumina were investigated by XPS and DRS analyses. The Ni-Mo oxides or precursor of the active phase which are chemically bonded between Mo and Ni were also confirmed from the binding energy shifts of the XPS peaks. The amount of Ni-Mo oxides was determined after the formation of metal oxides during calcination. The Ni-Mo sulfide (active phase) was then induced through sulfidation. It was important that Mo should be located at the tetrahedral sites on the alumina with a high Mo dispersion. These results indicated that there are two important factors in preparing highly efficient Ni-Mo catalysts; one is that Mo should be located at the tetrahedral coordination on Al2O3 in high dispersion (Mo/Al2O3) and the other is that the Ni species should be supported on MoAl2O4 to form Ni-Mo oxides which change into the Ni-Mo sulfide active sites by sulfidation.  相似文献   

12.
Various metal oxides with 0.1 wt% Ag loaded as a cocatalyst were prepared by an impregnation method and examined their photocatalytic activity for CO2 reduction with water. Among all the prepared Ag-loaded metal oxides, Ga2O3, ZrO2, Y2O3, MgO, and La2O3 showed activities for CO and H2 productions under ultraviolet light irradiation. Thus, metal oxides involving metal cations with closed shell electronic structures such as d0, d10, and s0 had the potential for CO2 reduction with water. In situ Fourier transform infrared measurement revealed that the photocatalytic activity and selectivity for CO production are controlled by the amount and chemical states of CO2 adsorbed on the catalyst surface and by the surface basicity, as summarized as follows: Ag/ZrO2 enhanced H2 production rather than CO production due to very little CO2 adsorption. Ag/Ga2O3 exhibited the highest activity for CO production, because adsorbed monodentate bicarbonate was effectively converted to bidentate formate being the reaction intermediates for CO production owing to its weak surface basicity. Ag/La2O3, Ag/Y2O3, and Ag/MgO having both weak and strong basic sites adsorbed larger amount of carbonate species including their ions and suppressed H2 production. However, the adsorbed carbonate species were hardly converted to the bidentate formate.  相似文献   

13.
Interaction of HCOOH and H2CO with K3PMo12O40 has been studied by IR spectroscopy. HCOOH adsorbed mainly in molecular form due to hydrogen bonds with surface oxygen ions. Two forms of adsorbed H2CO were observed depending on the pressure. At low pressures it adsorbed on Br?nsted acid sites with the formation of hydrogen-bonded complexes. Dioxymethylene groups and a small amount of polyoxymethylene groups were formed at higher pressures. In contrast to oxide catalysts, formates were formed only in small amounts in the absence of oxygen. This can be explained by the formation of new surface adsorption sites Mo ions-due to a partial reduction of K3PMo12O40 during its interaction with HCOOH and H2CO.  相似文献   

14.
Density‐functional based calculations were used to investigate self‐assembled monolayers of different alkylphosphonic acids on corundum α‐Al2O3 (0001), bayerite β‐Al(OH)3 (001) and boehmite γ‐AlOOH (010) surface models. Mono‐, bi‐, and tridentate adsorption modes were considered. In addition, the organization of single adsorbed molecules was compared to the organization at full surface coverage. The height (thickness) of the self‐assembled monolayers is always shorter than the length of the phosphonic acid molecules due to tilting of the alkyl chains. Tilt angles at full surface coverage are very similar to the tilt angle of a single adsorbed molecule, which indicates that the density of the self‐assembled monolayers is limited by the density of adsorption sites. The lateral interactions between alkyl chains are evidenced by small torsions of the adsorbed molecules, which may serve to minimize the repulsion forces between interchain hydrogen atoms. Similar tilt angles were obtained for mono‐, bi‐, and tridentate adsorptions. Hence, the coordination mode cannot be characterized by the molecule tilting.  相似文献   

15.
Catalysts based on Mn-substituted cordierite 2MnO · 2Al2O3 · 5SiO2 have been synthesized using different manganese oxides (MnO, Mn2O3, and MnO2) at a calcination temperature of 1100°C. The catalysts differ in their physicochemical properties, namely, phase composition (cordierite content and crystallinity), manganese oxide distribution and dispersion, texture, and activity in high-temperature ammonia oxidation. The synthesis involving MnO yields Mn-substituted cordierite with a defective structure, because greater part of the manganese cations is not incorporated in this structure and is encapsulated and the surface contains a small amount of manganese oxides. This catalyst shows the lowest ammonia oxidation activity. The catalysts prepared using Mn2O3 or MnO2 are well-crystallized Mn-substituted cordierite whose surface contains different amounts of manganese oxides differing in their particle size. They ensure a high nitrogen oxides yield in a wide temperature range. The product yield increases with an increasing surface concentration of Mn3+ cations. The highest NOx yield (about 76% at 800–850°C) is observed for the MnO2-based catalyst, whose surface contains the largest amount of manganese oxides.  相似文献   

16.
Electrochemical voltammetric curves on Ru and Pt blacks of a different surface area were measured in potential intervals 0.05–1.05 V in pure 0.5 M H2SO4 and after CO adsorption. It was proved that after the CO adsorption, the outset of ruthenium oxidation is shifted by about 150 mV towards the positive potentials, e.g. to the region of oxidation of adsorbed CO. This fact made possible the determination of a double-layer charging current of Ru electrodes and, subsequently, also the determination of the amount of adsorbed hydrogen on the Ru surface. An evaluation of the amount of CO and hydrogen adsorption showed that the ratio of adsorbed CO:H on the Pt surface was about 1:1, while on Ru electrodes this ratio was around twice as large. The amount of hydrogen adsorbed on Ru blacks depends on the preliminary preparation of the electrodes. The CO adsorption could also be employed in the determination of a charging current of electrode double-layers during voltammetric oxidation of adsorbed hydrogen on ruthenium supported on Al2O3, SiO2, or TiO2 carriers. However, a similar determination of hydrogen adsorbed on the tin-modified Ru catalysts is not very reliable.  相似文献   

17.
The reaction of γ‐alumina with tetraethylorthosilicate (TEOS) vapor at low temperatures selectively yields monomeric SiOx species on the alumina surface. These isolated (‐AlO)3Si(OH) sites are characterized by PXRD, XPS, DRIFTS of adsorbed NH3, CO, and pyridine, and 29Si and 27Al DNP‐enhanced solid‐state NMR spectroscopy. The formation of isolated sites suggests that TEOS reacts preferentially at strong Lewis acid sites on the γ‐Al2O3 surface, functionalizing the surface with “mild” Brønsted acid sites. For liquid‐phase catalytic cyclohexanol dehydration, these SiOx sites exhibit up to 3.5‐fold higher specific activity than the parent alumina with identical selectivity.  相似文献   

18.
Laser-induced luminescence of OHs groups for undoped Al2O3 oxides of various phase compositions was excited by pulsed nitrogen laser radiation at 337.1 nm. The luminescence band at 500–650 nm assigned to hydroxide groups of Al2O3, actually, consists of several lines at 500–515, 553, 567, 577, 607, and 633 nm; these constituent bands can be assigned to various types of OHs surface groups. In the low-temperature phases of the γ→δ→θ-Al2O3 series, excitation at a wavelength of 337.1 nm gave rise to a characteristic luminescence band associated with surface hydroxide groups of Al2O3 that appeared at 770 nm.  相似文献   

19.
We prepared Pd catalysts supported on various metal oxides, viz. γ-Al2O3, α-Al2O3, SiO2–Al2O3, SiO2, CeO2 and TiO2 by an incipient wetness method and applied them to propane combustion. Several techniques: N2 physisorption, inductively coupled plasma-atomic emission spectroscopy (ICP-AES), CO chemisorption, temperature-programmed reduction (TPR) and temperature-programmed oxidation (TPO) were employed to characterize the catalysts. Pd/SiO2–Al2O3 showed the least catalytic activity at high temperatures among Pd catalysts supported on irreducible metal oxides, viz. SiO2, Al2O3 and SiO2–Al2O3. Pd/γ-Al2O3 was much superior for this reaction to Pd/α-Al2O3. The Pd catalyst supported on reducible metal oxides (CeO2 and TiO2) with a less specific surface area showed the higher catalytic activity compared with that supported on reducible metal oxides with a higher specific surface area, even though the former had a less Pd dispersion than the latter. In the case of Pd/SiO2–Al2O3, the initially reduced Pd catalyst was superior to the fully oxidized one. The oxidation of metallic Pd occurred in the presence of O2 with increasing reaction temperature, which resulted in the change in the catalytic activity.  相似文献   

20.
Ammonia synthesis by means of plasma over MgO catalyst   总被引:1,自引:0,他引:1  
Ammonia synthesis from H2-N2 mixed gas was studied at room temperature in a glow-discharge plasma in the presence of metals or metal oxides. Magnesia (MgO) and calcia (CaO), which are oxides with solid basicity, revealed catalytic activity in the plasma synthesis of ammonia, although they are catalytically inactive in industrial ammonia synthesis. The acidic oxides (Al2O3, WO3, and SiO2-Al2O3) lead to the consumption of the reactant, i.e., the H2-N2 mixed gas. No ammonia was isolated. Metal catalysts showed higher activity than the above basic oxides. They have, however, different activities. The reaction was faster over the active materials than over sodium chloride (NaCl) or glass wool or in a blank reactor without any catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号