首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A heptacoordinated mononuclear cobalt(II) complex of tridentate bis(N‐ethylbenzimidazol‐2‐ylmethyl)aniline (Etbba) formulated as [Co(Etbba)(pic)2] · (MeCN) (pic = picrate), was synthesized and characterized by elemental analysis, electric conductivity measurements, as well as IR and UV/Vis spectroscopy. The crystal structure of the cobalt(II) complex was determined by single‐crystal X‐ray diffraction. The study shows the metal atom in a distorted monocapped octahedral arrangement that comprises two picrate molecules and one Etbba ligand molecule. The DNA‐binding properties of the cobalt(II) complex were investigated by electronic absorption and fluorescence spectroscopy, as well as viscosity measurements. The experimental results suggest that the cobalt(II) complex binds to DNA in an intercalating mode. In addition, the complex shows strong scavenging effects for hydroxyl radicals.  相似文献   

2.
A new complex of copper(II) picrate (pic) with 1, 3‐bis(1‐allaylbenzimidazol‐2‐yl)‐2‐oxopropane (aobb), with the composition [Cu(aobb)2](pic)2, was synthesized and characterized. The crystal structure of the copper(II) complex revealed that the coordination environment around the central copper(II) atom is a distorted octahedral arrangement. Electronic absorption spectroscopy, ethidium bromide displacement experiments and viscosity measurements indicate that the ligand and the CuII complex can strongly bind to calf thymus DNA, presumably by an intercalation mechanism. Furthermore, the antioxidant activity of the CuII complex was determined by superoxide and hydroxyl radical scavenging method in vitro, which indicate that the CuII complex has the activity to suppress OH · and O2 · –.  相似文献   

3.
Tris(N-methylbenzimidazol-2-ylmethyl)amine (Mentb) and its two complexes, [Mn(Mentb)(DMF)(H2O)](pic)2 1 and [Zn(Mentb)(pic)](pic) 2 (pic = picrate), have been synthesized and characterized by physico-chemical and spectroscopic methods. Single crystal X-ray diffraction revealed that the two complexes have different structures. In complex 1, the coordination sphere around Mn(II) is distorted octahedral, whereas in complex 2 the coordination sphere around Zn(II) is distorted trigonal bipyramidal. The DNA-binding properties of the free ligand and its two complexes have been investigated by electronic absorption, fluorescence, and viscosity measurements. The results suggest that the ligand and its two complexes bind to DNA via an intercalation binding mode, and their binding affinity for DNA follows the order 1 > 2 > ligand.  相似文献   

4.
A V-shaped ligand bis(N-methylbenzimidazol-2-ylmethyl)benzylamine (L) and its zinc(II) complex, [ZnL 2](pic)2?·?2CH3CN (pic?=?picrate), have been synthesized and characterized by physico-chemical and spectroscopic methods. Single-crystal X-ray crystallographic analysis revealed that the Zn(II) complex possesses a distorted trigonal bipyramidal geometry. Supramolecular interactions arising from various intra- or intermolecular π···π stacking interactions contributed to the form of the multidimensional configuration. Interactions of L and Zn(II) complex with DNA were monitored using spectrophotometric methods and viscosity measurements. The results suggest that L and Zn(II) complex both bind to DNA via intercalation and Zn(II) complex binds to DNA more strongly than L. Moreover, the Zn(II) complex also exhibited potential antioxidant properties in vitro.  相似文献   

5.
A complex of formula [Ni(pobb)2](pic)2, (pobb = 1,3‐bis(1‐propylbenzimidazol‐2‐yl)‐2‐oxapropane, pic = 2,4,6‐trinitrophenol), has been synthesized and structurally characterized by physico‐chemical and spectroscopic methods. The crystals crystallize in the monoclinic system, space group C2/c, a = 25.766(11) Å, b = 14.943(7) Å, c = 19.543(14) Å, α = 90°, β = 129.722(4)°, γ = 90°, Z = 4. The coordination environment around nickel(II) atom can be described as a distorted octahedral geometry. The interactions of the ligand pobb and the nickel (II) complex with calf thymus DNA (CT‐DNA) are investigated by using electronic absorption titration, ethidium bromide‐DNA displacement experiments and viscosity measurements. The experimental evidence indicated the compounds interact with calf thymus DNA through intercalation.  相似文献   

6.
A V-shaped ligand, 1,3-bis(1-methylbenzimidazol-2-yl)-2-thiapropane (L), and its copper(II) and manganese(II) picrate complexes have been synthesized and characterized. The compositions of the complexes are [Cu(L)2](pic)2·2DMF (1) and [Mn(L)(pic)2] (2), respectively. The crystal structure of complex 1 reveals a distorted tetrahedral geometry provided by four N donors from two ligands. Complex 2 is six coordinated, with a distorted octahedral geometry. Experimental studies of the DNA-binding properties indicated that the free ligand and both complexes bind to DNA via the intercalation mode, and the order of the binding affinity is L > 1 > 2. Antioxidant tests in vitro show that the Cu(II) complex possesses significant antioxidant activity against superoxide and hydroxyl radicals, with better scavenging effects than mannitol and vitamin C.  相似文献   

7.
A five-coordinate zinc complex with tris(2-(N-methyl)benzimidazylmethyl)amine (Mentb) and salicylate, with composition [Zn(Mentb)(salicylate)](NO3), was synthesized and characterized by elemental analysis, IR and UV-Vis spectral measurements. The crystal structure of the zinc complex shows that Zn(II) is bonded to tris(2-(N-methyl)benzimidazylmethyl)amine (Mentb) and a salicylate through four nitrogens and one oxygen, and the coordination geometry is best described as distorted trigonal-bipyramid. The DNA-binding of the Zn(II) complex and Mentb were investigated by spectrophotometric methods and viscosity measurements, and the results suggest that the Zn(II) complex binds to DNA via intercalation; the binding affinity of the Zn(II) complex to DNA is greater than Mentb. Additionally, Zn(II) complex exhibited potential to scavenge hydroxyl radical in vitro.  相似文献   

8.
A new ternary monocopper(II) complex with co‐ligands of 2,2′‐diamino‐4,4′‐bithiazole (dabt) and picrate (pic), namely [Cu(dabt)(pic)2], has been synthesized and characterized using elemental analyses, molar conductance measurements, infrared and electronic spectral studies and single‐crystal X‐ray diffraction. The crystal structure analyses revealed that the copper(II) ion has a {CuN2O4} distorted octahedral coordination environment. The hydrogen bonding interactions contribute to a three‐dimensional supramolecular structure in the crystal. The reactivity towards herring sperm DNA showed that the copper(II) complex can interact with DNA in the mode of intercalation. The molecular docking of the complex with DNA sequence d(ACCGACGTCGGT)2 demonstrated that the copper(II) complex is stabilized by hydrogen bonding interaction. The in vitro anticancer activities suggested that the copper(II) complex is active against selected tumor cell lines. The effects of the two co‐ligands in the copper(II) complex on DNA‐binding events and in vitro anticancer activity are preliminarily discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
The tetradentate Schiff base ligand (SB), N,N′‐bis‐(2‐mercaptophenylimine)‐2,5‐thiophenedicarboxaldehyde was prepared via condensation of 2,5‐thiophene‐dicarboxaldehyde with 2‐aminothiophenol in a 1:2 molar ratio by conventional method. Additionally, its Co(II), Ni(II), Cu(II) and Zn(II) complexes have been synthesized and fully characterized by elemental analysis, FT‐IR, 1H NMR, 13C NMR, UV–Vis, ESR, ESI‐mass, conductivity and magnetic susceptibility measurements. Spectral studies suggested that, the Schiff base coordinate metal ions through the azomethine N‐ and deprotonated thiol S‐ atoms. Based on UV–Vis absorption and magnetic susceptibility data, tetrahedral geometry was assigned for both Co(II) and Zn(II) complexes, whereas on the other hand, square planar geometry for both Ni(II) and Cu(II) complexes. The Schiff base and its metal complexes were screened for their in vitro antimicrobial activity by minimum inhibitory concentration (MIC) method. Free radical scavenging activity of the novel compounds was determined by elimination of 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) radicals. In addition, the interactions of the free ligand and its complexes with calf thymus DNA (CT‐DNA) were explored using absorption, emission and viscosity measurements techniques.  相似文献   

10.
A novel tetradentate dianionic Schiff base ligand, N ,N ′‐bis(2‐carboxyphenylimine)‐2,5‐thiophenedicarboxaldhyde (H2L) and some first row d‐transition metal chelates (Co(II), Cu(II), Ni(II) and Zn(II)) were synthesized and characterized using various physicochemical and spectroscopic methods. The spectroscopic data suggested that the parent Schiff base ligand coordinates through both deprotonated carboxylic oxygen and imine nitrogen atoms. The free Schiff base and its metal chelates were screened for their antimicrobial activities for various pathogenic bacteria and fungi using the agar well diffusion method. The antibacterial and antifungal activities of all the newly synthesized compounds are significant compared to the standard drugs ciprofloxacin and nystatin. The antioxidant activities of the compounds were determined by reduction of 1,1‐diphenyl‐2‐picrylhydrazyl and compared with that of vitamin C as a standard. DNA binding ability of the novel Schiff base and its complexes was investigated using absorption spectroscopy, fluorescence spectroscopy, viscosity measurements and thermal denaturation. The obtained results clearly demonstrate that the binding affinity with calf thymus DNA follows the order: Cu(II) complex > Ni(II) complex > Zn(II) complex > Co(II) complex >H2L. Furthermore, the DNA cleavage activity of the newly synthesized ligand and its metal complexes was investigated using supercoiled plasmid DNA (pUC18) gel electrophoresis.  相似文献   

11.
The title compounds, bis­(pyridine‐2,6‐di­carboxyl­ato‐N,O,O′)copper(II) monohydrate, [Cu(C7H4NO4)2]·H2O, andbis(pyridine‐2,6‐dicarboxylato‐N,O,O′)zinc(II) trihydrate, [Zn(C7H4NO4)2]·3H2O, have distorted octahedral geometries about the metal centres. Both metal ions are bonded to four O atoms and two pyridyl‐N atoms from the two terdentate ligand mol­ecules, which are nearly perpendicular to each other. The copper(II) complex has twofold crystallographic symmetry and contains two different ligand mol­ecules, one of which is neutral and another doubly ionized. In contrast, the zinc(II) complex contains two identical singly ionized ligand mol­ecules. Both crystal structures are stabilized by O—H?O intermolecular hydrogen bonds between the complex and the water mol­ecules.  相似文献   

12.
The Schiff base N,N′‐bis(salicylidene)‐1,5‐diamino‐3‐oxapentane (H2L) and its lanthanide(III) complexes, PrL(NO3)(DMF)(H2O) ( 1 ) and Ho2L2(NO3)2 · 2H2O ( 2 ), were synthesized and characterized by physicochemical and spectroscopic methods. Single crystal X‐ray structure analysis revealed that complex 1 is a discrete mononuclear species. The PrIII ion is nine‐coordinate, forming a distorted capped square antiprismatic arrangement. Complex 2 is a centrosymmetric dinuclear neutral entity in which the HoIII ion is eight‐coordinate with distorted square antiprismatic arrangement. The DNA‐binding properties of H2L and its LnIII complexes were investigated by spectrophotometric methods and viscosity measurements. The results suggest that the ligand H2L and its LnIII complexes both connect to DNA in a groove binding mode; the complexes bind more strongly to DNA than the ligand. Moreover, the antioxidant activities of the LnIII complexes were in vitro determined by superoxide and hydroxyl radical scavenging methods, which indicate that complexes 1 and 2 have OH · and O2– · radical scavenging activity.  相似文献   

13.
Novel zinc(II), copper(II), and cobalt(II) complexes of the Schiff base derived from 2‐hydroxy‐1‐naphthaldehyde and D, L ‐selenomethionine were synthesized and characterized by elemental analysis, IR, electronic spectra, conductance measurements, magnetic measurements and powder XRD. The analytical data showed the composition of the metal complex to be ML(H2O), where L is the Schiff base ligand and M = Co(II), Cu(II) and Zn(II). IR results confirmed the tridentate binding of the Schiff base ligand involving azomethine nitrogen, naphthol oxygen and carboxylato oxygen atoms. 1H NMR spectral data of lithium salt of the Schiff base ligand [Li(HL)] and ZnL(H2O) agreed with the proposed structures. The conductivity values of complexes between 12.50 and 15.45 S cm2 mol?1 in DMF suggested the presence of non‐electrolyte species. The powder XRD studies indicated that Co(II) complex is amorphous, whereas Cu(II) and Zn(II) complexes are crystalline. The results of antibacterial and antifungal screening studies indicated that Li(HL) and its metal complexes are active, but CuL(H2O) is most active among them. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
A novel bi‐nucleating Schiff base ligand, 6,6′‐(((1E,1′E)‐thiophene‐2,5‐diylbis (methaneylylidene))bis (azaneylylidene))bis (3,4‐dimethylaniline), and five binuclear M (II) complexes were synthesized. The bi‐nucleating Schiff base ligand and its metal complexes were characterized using various physicochemical techniques, e.g. elemental analyses, spectroscopic methods, conductivity and magnetic moment measurements. The low molar conductance of the complexes in dimethylsulfoxide shows their non‐electrolytic nature. The antibacterial activities were screened against pathogenic bacteria (Staphylococcus aureus, Escherichia coli, Pseudomonas putida and Bacillus subtilis). The antifungal activity was screened against Aspergillus niger, Aspergillus flavus and Rhizoctonia bataicola. The antimicrobial activity data showed that the metal complexes are more potent than the parent Schiff base ligand against microorganisms. The antioxidant activities of the synthesized compounds were investigated through scavenging activity against 2,2‐diphenyl‐2‐picrylhydrazyl, superoxide anion, hydroxyl and 2,2′‐ azinobis (3‐ethylbenzothiazoline‐6‐sulfonic acid) radicals. The complexes have superior radical scavenging activity than the free ligand and the scavenging effects of the Cu (II) complex are stronger than those of the other complexes. DNA binding studies were performed using electronic spectroscopy, fluorometric competition studies and viscosity measurements. The data indicated that there is a marked enhancement in biocidal activity of the ligand under similar experimental conditions because of coordination with metal ions.  相似文献   

15.
D‐glucosamine Schiff base N‐(2‐deoxy‐β‐D‐glucopyranosyl‐2‐salicylaldimino) and its Cu(II) and Zn(II) complexes were synthesized and characterized. The hydrolysis of p‐nitrophenyl picolinate (PNPP) catalyzed by ligand and complexes was investigated kinetically by observing the rates of the release of p‐nitrophenol in the aqueous buffers at 25°C and different pHs. The scheme for reaction acting mode involving a ternary complex composed of ligand, metal ion, and substrate was established and the reaction mechanisms were discussed by metal–hydroxyl and Lewis acid mechanisms. The experimental results indicated that the complexes, especially the Cu(II) complex, efficiently catalyzed the hydrolysis of PNPP. The catalytic reactivity of the Zn(II) complex was much smaller than the Cu(II) complex. The rate constant kN showing the catalytic reactivity of the Cu(II) complex was determined to be 0.299 s?1 (at pH 8.02) in the buffer. The pKa of hydroxyl group of the ternary complex was determined to be 7.86 for the Cu(II) complex. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 345–350, 2002  相似文献   

16.
The asymmetric unit of the title compound, [Zn(C7H5O3)2(C10H8N2)], contains one monomeric zinc complex. The Zn atom is coordinated to one 2,2′‐bipyridyl ligand via both N atoms and to two salicyl­ate anions (Hsal) in a bidentate chelating manner involving carboxyl­ate O‐atom coordination. The complex exhibits a distorted octahedral geometry about the ZnII atom, with the `apical' positions occupied by one of the two N atoms of the bipyridyl ligand and an O atom from one Hsal ligand; the Zn atom is 0.168 (1) Å out of the `basal' plane. Two intramolecular six‐membered hydrogen‐bonded rings are present, generated from interactions between the carboxyl and hydroxyl groups of the salicyl­ate ligands. The crystal packing is governed by weak C—H⋯O and C—H⋯π interactions.  相似文献   

17.
合成并结构表征了一种新型的线性三核锌(II)配合物,{[ZnL(OAc)]2Zn}∙CH3COCH3(H2L:乙二氧双(5-溴-2-羟基苯亚甲基胺))。X-射线结构表明配合物中三个锌(II)离子配位到了两个四齿的L2-单元和两个桥联的的乙酸根基团。围绕两端的Zn(1) 或 Zn(1)#1原子形成了扭曲的四方锥配位几何体,围绕中心Zn(2) 原子构成了一个稍微扭曲的八面体配位结构。同时,观察到锌(II)配合物能发出蓝绿色荧光,其最大发射波长为464 nm。  相似文献   

18.
The reaction of zinc bromide with the pentadentate chelating ligand 2, 6‐diacetylpyridine bis(thiosemicarbazone) (H2L1) yields the formation of a novel complex. Recrystallization in a acetone/water solution leads us to isolate the mixed ligand complex of [Zn(H2L1)Br0.49(OH)0.51]2·(HSO4)2·6H2O, structurally characterized. The complex is a dimer in which each zinc atom is seven‐co‐ordinated with the SNNNS‐chelating ligand occupying the five equatorial positions, a bromine atom or hydroxo group in one of the two axial positions and a sulfur atom of the centrosymmetrical molecule occupies the other axial site making a bridge between the two zinc atoms. To the best of our knowledge is the first S‐bridged dimeric Zinc(II) complex derived from 2, 6‐diacetylpyridine bis(thiosemicarbazone) ligand. The MALDI‐TOF mass, solid state IR and 1H NMR (in DMSO solution) spectra are also discussed.  相似文献   

19.
New cobalt(II), copper(II) and zinc(II) complexes of Schiff base derived from D,L ‐selenomethionine and salicylaldehyde were synthesized and characterized by elemental analysis, IR, electronic spectra, conductance measurements, magnetic measurements and biological activity. The analytical data showed that the Schiff base ligand acts as tridentate towards divalent metal ions (cobalt, copper, zinc) via the azomethine‐N, carboxylate oxygen and phenolato oxygen by a stoichiometric reaction of M:L (1:1) to form metal complexes [ML(H2O)], where L is the Schiff base ligand derived from D,L ‐selenomethionine and salicylaldehyde and M = Co(II), Cu(II) and Zn(II). 1H NMR spectral data of the ligand and Zn(II) complex agree with proposed structures. The conductivity values between 12.87 and 15.63 S cm2 mol?1 in DMF imply the presence of non‐electrolyte species. Antibacterial and antifungal results indicate that the metal complexes are more active than the ligand. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Thiosemicarbazone ligand, 2‐((4,9‐dimethoxy‐5‐oxo‐5H‐furo[3,2‐g]chromen‐6‐yl)methylene) hydrazinecarbothioamide and its Cd(II), Cu(II), Zn(II), Ni(II), Co(II), VO(II), and Mn(II) complexes have been prepared and characterized by various spectroscopic and analytical techniques. Complexes molar conductance measurements displayed that all complexes (2–8) are non‐electrolyte. With general composition [M(H3L)(CH3COO)2H2O].nH2O, where M = Cd(II), Cu(II), Zn(II), Ni(II), Co(II) and Mn(II) while complex (8) has [VO(H3L)(SO4)H2O].2H2O formula. Based on analytical and spectral measurements, the octahedral or distorted octahedral geometries suggested for complexes. Ligand and complexes anti‐proliferative activities were assessed against three various human tumor cell lines including breast cancer (MCF‐7), liver cancer (HepG2) and lung cancer (A549) using SRB fluorometric assay and cis‐platin as positive control. The anti‐proliferative activity result indicated that the ligand and its complexes have considerable anti‐proliferative activity analogous to that of ordinarily utilized anti‐cancer drug (cis‐platin). They do their anti‐cancer activities by modifying free radical's generation via raising the superoxide dismutase activity and depletion of intracellular reduced glutathione level, catalase, glutathione peroxidase activities, escorted by highly generation of hydrogen peroxide, nitric oxide and other free radicals leading to tumor cells death, as monitoring by decreasing the protein and nucleic acids synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号