首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many of heterogeneous structural materials, like concrete, have different behavior under tensile stresses in comparison to their behavior under compressive stresses. The aim of this paper is to interpret behavior of such materials subjected to tensile stresses, by using newly introduced concept of fractal geometry. In the first part of this paper, tensile behavior of granular composites has been studied by using fractal geometry. It is shown that the fractality of the cross section in this kind of composites can be used to interpret the size effect on tensile strength. In fact, this work is a modification with innovations on the previous studies on fractal based size effect.This hypothesis that the fracture surfaces of quasi-brittle materials are fractals has been verified by several investigations. Accordingly, in the other part of this paper, softening process in heterogeneous materials is studied. Resulting from presented approach, a new softening curve for quasi-brittle materials is proposed. This new softening curve is denominated “Quasi-fractal softening curve” and is consisted of two parts, a linear portion in beginning part and an exponential portion in rest of the curve. This makes it very compatible to the pre-existing softening curves.  相似文献   

2.
基于临界平面法,分析了WB模型的缺陷,发现:WB模型中的法向应变变程不能很好的反映材料非比例循环加载下的附加强化现象,且模型中的经验常数是一个与寿命相关的参数,该参数不能简单的利用拉伸和扭转疲劳极限来确定。为克服WB模型的缺陷,提出了一个新的多轴疲劳损伤参量,引入了一个新的应力相关因子,建立了新的寿命估算模型。新的损伤参量不含经验常数,应力相关因子能够反映材料非比例循环加载下的附加强化现象,所建模型能够精确估算材料的多轴疲劳寿命,便于工程应用。  相似文献   

3.
A new continuum damage mechanics model for fretting fatigue life prediction is established. In this model, the damage evolution rate is described by two kinds of quantities. One is associated with the cyclic stress characteristics obtained by the finite element(FE) analysis, and the other is associated with the material fatigue property identified from the fatigue test data of standard specimens. The wear is modeled by the energy wear law to simulate the contact geometry evolution. A two-dimensional(2D) plane strain FE implementation of the damage mechanics model and the energy wear model is presented in the platform of ABAQUS to simulate the evolutions of the fatigue damage and the wear scar. The effect of the specimen thickness is also investigated. The predicted results of the crack initiation site and the fretting fatigue life agree well with available experimental data. Comparisons are made with the critical plane SmithWatson-Topper(SWT) method.  相似文献   

4.
In this work, we present simulations of shape memory alloys which serve as first examples demonstrating the predicting character of energy-based material models. We begin with a theoretical approach for the derivation of the caloric parts of the Helmholtz free energy. Afterwards, experimental results for DSC measurements are presented. Then, we recall a micromechanical model based on the principle of the minimum of the dissipation potential for the simulation of polycrystalline shape memory alloys. The previously determined caloric parts of the Helmholtz free energy close the set of model parameters without the need of parameter fitting. All quantities are derived directly from experiments. Finally, we compare finite element results for tension tests to experimental data and show that the model identified by thermal measurements can predict mechanically induced phase transformations and thus rationalize global material behavior without any further assumptions.  相似文献   

5.
In this study, the fatigue crack propagation behavior in the stress interaction field between two different fatigue cracks is studied by experiment and finite element analysis. In the experiment, the offset distance between two cracks and the applied stress are varied to create different stress interaction fields. The size of the plastic zone area is used to examine the crack propagation path and rate. Three types of crack propagation in the interaction field were found by experiment, and the crack propagation behavior of two cracks was significantly changed as different stresses were applied. The size of the plastic zone obtained by finite element analysis can be used to explain crack propagation behavior qualitatively.  相似文献   

6.
Taking both the heterogeneous catalytic processes, including the surface formation of particles with excited internal degrees of freedom, and the processes of multicomponent diffusion and heat transfer in the MESOX apparatus fully into account makes it possible to obtain a recombination coefficient and an accommodation coefficient of the oxygen-atoms-on-quartz recombination energy which are in good agreement with the experimental data. The heterogeneous catalysis model constructed can be used effectively for predicting the heat fluxes to the surface of reentry vehicles on their entry into the Earth’s atmosphere.  相似文献   

7.
8.
The numerical simulation of flow through heterogeneous formations requires the assignment of the conductivity value to each numerical block. The conductivity is subjected to uncertainty and is modeled as a stationary random space function. In this study a methodology is proposed to relate the statistical moments of the block conductivity to the given moments of the continuously distributed conductivity and to the size of the numerical blocks. After formulating the necessary conditions to be satisfied by the flow in the upscaled medium, it is found that they are obeyed if the mean and the two-point covariance of the space averaged energy disspation function over numerical elements in the two media, of point value and of upscaled conductivity, are identical. This general approach leads to a systematic upscaling procedure for uniform average flow in an unbounded domain. It yields the statistical moments of upscaled logconductivity that depend only on those of the original one and on the size and shape of the numerical elements.The approach is applied to formations of isotropic heterogeneity and to isotropic partition elements. After a general discussion based on dimensional analysis, the procedure is illustrated by using a first-order approximation in the logconductivity variance. The upscaled logconductivity moments (mean, two-point covariance) are computed for two and three dimensional flows, isotropic heterogeneous media and elements of circular or spherical shape. The asymptotic cases of elements of small size, which preserve the point value conductivity structure on one hand, and of large blocks for which the medium can be replaced by one of deterministic effective properties, on the other hand, are analyzed in detail. The results can be used in order to generate the conductivity of numerical elements in Monte Carlo simulations.Nomenclature C covariance - e rate of dissipation of mechanical energy per unit weight of fluid - E total rate of energy dissipation in the flow domain - H overlap function - K hydraulic conductivity - K G geometrical mean of conductivity - I integral scale - J=P mean head gradient - L characteristic size of - l characteristic size of also diameter of circle and sphere - n number of dimensions - P pressure head - Q total fluid discharge - S A ,S B inlet and outlet boundaries of flow domain - v velocity - Y logconductivity - characteristic scale of flow nonuniformity - autocorrelation function - 2 variance - flow domain - partition element Overlining space averaged over - Ã upscaled quantity - â Fourier transform ofa  相似文献   

9.
针对穿越采空区埋地管道的动态力学预测问题,本文在概率积分法基础上将煤矿开采距离定义为开采时间与开采速度的乘积,采用分段Knothe函数模型并使用叠加原理,建立了在管-土协同变形期间水平煤层及缓倾斜煤层下埋地管道的动态下沉模型;在此基础上,运用弹性地基梁模型求解管道的挠度并结合分段Knothe函数建立了管道动态力学预测模...  相似文献   

10.
A CFD simulation was proposed to investigate the electrostatic effect on the hydrodynamic behavior of turbulent gas–solid flow in FCC risers. The simulation was first verified using the open experimental data with expected electrostatic effects observed in FCC risers. The influences of several operating parameters on the degree of electrification in FCC risers were analyzed, such as surface charge densities, pressure, gas velocity. It was noted that the gas velocity played a highly significant role compared with solid flux, while the effect of pressure was relatively weak. Further analysis showed that a much stronger electrostatic effect was found in small-scale FCC risers than their large-scale counterparts, and in addition, the major regions affected by the electrostatic charge depend on the scale of the riser. Finally, an external electric field was applied to optimize the flow field distribution in the FCC riser. The results of the electrostatic effects on the hydrodynamic behaviors in FCC risers are of great use in providing a reference for the optimization of FCC risers and their scaling.  相似文献   

11.
The techniques that have been developed for the measurement of heat flux density are reviewed briefly. These techniques may be divided into two broad categories: (1) indirect methods based on the fundamental theories of heat transfer and (2) direct methods using a heat flux density sensor. Various methods are compared in order to stimulate further research and the development of sophisticated techniques for the measurement of heat flux density in the field of combustion.  相似文献   

12.
Residual stresses emerge quite often in real structures due to the various manufacturing processes such as, welding, forming, cutting, milling, etc. In such cases, development of cracks at regions influenced by manufacturing operations demand additional attention. In the present work a numerical methodology has been developed, based on three-dimensional Finite Element Analysis, for the calculation of Stress Intensity Factors at cracks in welded components. The residual stress fields, which are used in SIF calculations, have been computed by the numerical simulation of the thermo-mechanical process. A numerical algorithm based on interpolation principles is developed, in order to introduce the three-dimensional field in the computational model of the cracked structure. The SIF calculation methodology is initially validated for the case of a welded plate by comparison of numerical results with existing analytical solutions. A cracked stiffened panel is analysed afterwards and the calculated fatigue crack propagation results are compared to experimentally measured data. Finally, the numerical procedure is applied to study the effect of more complicated residual stress fields on SIF values developing at cracks located in stiffened panels.  相似文献   

13.
Although there is now a considerable volume of high-strain (<105 cycles) fatigue data for uniaxial tension-compression and simple-bending conditions, relatively little information is available regarding the effects of stress and strain biaxiality. A method which has been used to study the effects of biaxiality on longlife fatigue strength is to subject thin-walled tubes to repeated internal pressure and an end load which is in phase with, and a linear function of, the pressure. The object of the present research was to use this method to study the influence of stress biaxiality on the high-strain fatigue behavior of a high strength, aluminum-4% copper alloy at room temperature. From a continuum-mechanics point of view, this material is completely elastic after the first few load cycles. Cylinder results for hoop to axial stress ratios of 2:1, 1:1, 1:2 and 2: ?1 suggest that fatigue failure of this material in the life range 103 to 105 cycles is primarily dependent on the maximum range of tensile stress. This conclusion and a study of fracture surfaces led to the use of linear-elastic fracture mechanics to interpret the fatigue and brittle fracture behavior of these cylinders.  相似文献   

14.
15.
New estimates are derived for the overall properties of linear solids with pointwise heterogeneous local properties. The derivation relies on the use of ‘comparison solids’ which, unlike comparison solids considered previously, are themselves pointwise heterogeneous. The estimates are then exploited within an incremental homogenization scheme to determine the overall response of multiphase elasto-viscoplastic solids under arbitrary loading histories. By way of example, the scheme is applied to incompressible Maxwellian solids with power-law plastic dissipation; particularly simple estimates of the Hashin–Shtrikman type are obtained. Predictions are confronted with full-field simulations for particulate composites under cyclic and rotating loading conditions. Good agreement is found for all cases considered. In particular, elasto-plastic transitions, tension-compression asymmetries (Bauschinger effect) and stress-path distortions induced by material heterogeneity are all well-captured, thus improving significantly on commonly used elastic-plastic decoupled schemes.  相似文献   

16.
The present paper investigates the fluid–structure interaction (FSI) of a wing with two degrees of freedom (DOF), i.e., pitch and heave, in the transitional Reynolds number regime. This 2-DOF setup marks a classic configuration in aeroelasticity to demonstrate flutter stability of wings. In the past, mainly analytic approaches have been developed to investigate this challenging problem under simplifying assumptions such as potential flow. Although the classical theory offers satisfying results for certain cases, modern numerical simulations based on fully coupled approaches, which are more generally applicable and powerful, are still rarely found. Thus, the aim of this paper is to provide appropriate experimental reference data for well-defined configurations under clear operating conditions. In a follow-up contribution these will be used to demonstrate the capability of modern simulation techniques to capture instantaneous physical phenomena such as flutter. The measurements in a wind tunnel are carried out based on digital-image correlation (DIC). The investigated setup consists of a straight wing using a symmetric NACA 0012 airfoil. For the experiments the model is mounted into a frame by means of bending and torsional springs imitating the elastic behavior of the wing. Three different configurations of the wing possessing a fixed elastic axis are considered. For this purpose, the center of gravity is shifted along the chord line of the airfoil influencing the flutter stability of the setup. Still air free-oscillation tests are used to determine characteristic properties of the unloaded system (e.g. mass moment of inertia and damping ratios) for one (pitch or heave) and two degrees (pitch and heave) of freedom. The investigations on the coupled 2-DOF system in the wind tunnel are performed in an overall chord Reynolds number range of 9.66×103Re8.77×104. The effect of the fluid-load induced damping is studied for the three configurations. Furthermore, the cases of limit-cycle oscillation (LCO) as well as diverging flutter motion of the wing are characterized in detail. In addition to the DIC measurements, hot-film measurements of the wake flow for the rigid and the oscillating airfoil are presented in order to distinguish effects originating from the flow and the structure.  相似文献   

17.
18.
19.
20.
We develop a theory of statistical mechanics for dissipative systems governed by equations of evolution that assigns probabilities to individual trajectories of the system. The theory is made mathematically rigorous and leads to precise predictions regarding the behavior of dissipative systems at finite temperature. Such predictions include the effect of temperature on yield phenomena and rheological time exponents. The particular case of an ensemble of dislocations moving in a slip plane through a random array of obstacles is studied numerically in detail. The numerical results bear out the analytical predictions regarding the mean response of the system, which exhibits Andrade creep.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号