首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Consider the operation on permutations consisting of removing the leading element and inserting it somewhere in the string. The number of such operations required to sort a permutation σ of {1,…,n} into increasing order is n - k, where k is the largest integer such that the last k entries of σ form an increasing sequence. There is a deterministic version of the problem, in which the leading element is always inserted into the position equal to its value, and the process ends when 1 reaches the front. The permutation requiring the greatest number of steps to termination is 23…n1, and it requires 2n−1 − 1 steps.  相似文献   

2.
In this paper we discuss a combinatorial problem involving graphs and matrices. Our problem is a matrix analogue of the classical problem of finding a system of distinct representatives (transversal) of a family of sets and relates closely to an extremal problem involving 1-factors and a long standing conjecture in the dimension theory of partially ordered sets. For an integer n ?1, let n denote the n element set {1,2,3,…, n}. Then let A be a k×t matrix. We say that A satisfies property P(n, k) when the following condition is satisfied: For every k-taple (x1,x2,…,xk?nk there exist k distinct integers j1,j2,…,jk so that xi= aii for i= 1,2,…,k. The minimum value of t for which there exists a k × t matrix A satisfying property P(n,k) is denoted by f(n,k). For each k?1 and n sufficiently large, we give an explicit formula for f(n, k): for each n?1 and k sufficiently large, we use probabilistic methods to provide inequalities for f(n,k).  相似文献   

3.
In the complete graph on n vertices, when each edge has a weight which is an exponential random variable, Frieze proved that the minimum spanning tree has weight tending to ζ(3) = 1/13 + 1/23 + 1/33 +… as n → ∞. We consider spanning trees constrained to have depth bounded by k from a specified root. We prove that if k ≥ log2 logn+ω(1), where ω(1) is any function going to ∞ with n, then the minimum bounded-depth spanning tree still has weight tending to ζ(3) as n → ∞, and that if k < log2 logn, then the weight is doubly-exponentially large in log2 logn ? k. It is NP-hard to find the minimum bounded-depth spanning tree, but when k≤log2 logn?ω(1), a simple greedy algorithm is asymptotically optimal, and when k ≥ log2 logn+ω(1), an algorithm which makes small changes to the minimum (unbounded depth) spanning tree is asymptotically optimal. We prove similar results for minimum bounded-depth Steiner trees, where the tree must connect a specified set of m vertices, and may or may not include other vertices. In particular, when m=const×n, if k≥log2 logn+ω(1), the minimum bounded-depth Steiner tree on the complete graph has asymptotically the same weight as the minimum Steiner tree, and if 1 ≤ k ≤ log2 logn?ω(1), the weight tends to $(1 - 2^{ - k} )\sqrt {8m/n} \left[ {\sqrt {2mn} /2^k } \right]^{1/(2^k - 1)}$ in both expectation and probability. The same results hold for minimum bounded-diameter Steiner trees when the diameter bound is 2k; when the diameter bound is increased from 2k to 2k+1, the minimum Steiner tree weight is reduced by a factor of $2^{1/(2^k - 1)}$ .  相似文献   

4.
Let T be a rooted tree structure with n nodes a1,…,an. A function f: {a1,…,an} into {1 < ? < k} is called monotone if whenever ai is a son of aj, then f(ai) ≥ f(aj). The average number of monotone bijections is determined for several classes of tree structures. If k is fixed, for the average number of monotone functions asymptotic equivalents of the form c · ??nn?32 (n → ∞) are obtained for several classes of tree structures.  相似文献   

5.
The problem of the number p(n , r), (1 ?r?n), of permutations on the set {1,…,n} with longest ascending subsequence of given length r is considered. By placing further restrictions on the ascending subsequence, combinatorial identities are obtained which allow the explicit calculation of p(n , r) in some cases.  相似文献   

6.
The theory of vertex-disjoint cycles and 2-factor of graphs has important applications in computer science and network communication. For a graph G, let σ 2(G):=min?{d(u)+d(v)|uv ? E(G),uv}. In the paper, the main results of this paper are as follows:
  1. Let k≥2 be an integer and G be a graph of order n≥3k, if σ 2(G)≥n+2k?2, then for any set of k distinct vertices v 1,…,v k , G has k vertex-disjoint cycles C 1,C 2,…,C k of length at most four such that v i V(C i ) for all 1≤ik.
  2. Let k≥1 be an integer and G be a graph of order n≥3k, if σ 2(G)≥n+2k?2, then for any set of k distinct vertices v 1,…,v k , G has k vertex-disjoint cycles C 1,C 2,…,C k such that:
    1. v i V(C i ) for all 1≤ik.
    2. V(C 1)∪???V(C k )=V(G), and
    3. |C i |≤4, 1≤ik?1.
Moreover, the condition on σ 2(G)≥n+2k?2 is sharp.  相似文献   

7.
We show that if A is a subset of {1, …, n} which has no pair of elements whose difference is equal to p ? 1 with p a prime number, then the size of A is O(n(log log n)?c(log log log log log n)) for some absolute c > 0.  相似文献   

8.
A tree is called starlike if it has exactly one vertex of degree greater than two. In [4] it was proved that two starlike treesG andH are cospectral if and only if they are isomorphic. We prove here that there exist no two non-isomorphic Laplacian cospectral starlike trees. Further, letG be a simple graph of ordern with vertex setV(G)={1,2, …,n} and letH={H 1,H 2, ...H n } be a family of rooted graphs. According to [2], the rooted productG(H) is the graph obtained by identifying the root ofH i with thei-th vertex ofG. In particular, ifH is the family of the paths $P_{k_1 } , P_{k_2 } , ..., P_{k_n } $ with the rooted vertices of degree one, in this paper the corresponding graphG(H) is called the sunlike graph and is denoted byG(k 1,k 2, …,k n ). For any (x 1,x 2, …,x n ) ∈I * n , whereI *={0,1}, letG(x 1,x 2, …,x n ) be the subgraph ofG which is obtained by deleting the verticesi 1, i2, …,i j ∈ V(G) (0≤j≤n), provided that $x_{i_1 } = x_{i_2 } = ... = x_{i_j } = 0$ . LetG(x 1,x 2,…, x n] be the characteristic polynomial ofG(x 1,x 2,…, x n ), understanding thatG[0, 0, …, 0] ≡ 1. We prove that $$G[k_1 , k_2 ,..., k_n ] = \Sigma _{x \in ^{I_ * ^n } } \left[ {\Pi _{i = 1}^n P_{k_i + x_i - 2} (\lambda )} \right]( - 1)^{n - (\mathop \Sigma \limits_{i = 1}^n x_i )} G[x_1 , x_2 , ..., x_n ]$$ where x=(x 1,x 2,…,x n );G[k 1,k 2,…,k n ] andP n (γ) denote the characteristic polynomial ofG(k 1,k 2,…,k n ) andP n , respectively. Besides, ifG is a graph with λ1(G)≥1 we show that λ1(G)≤λ1(G(k 1,k 2, ...,k n )) < for all positive integersk 1,k 2,…,k n , where λ1 denotes the largest eigenvalue.  相似文献   

9.
10.
In this article, we continue the study of the geometry of k-D’Atri spaces, 1≤kn?1 (n denotes the dimension of the manifold), begun by the second author. It is known that k-D’Atri spaces, k≥1, are related to properties of Jacobi operators R v along geodesics, since she has shown that ${\operatorname{tr}}R_{v}$ , ${\operatorname{tr}}R_{v}^{2}$ are invariant under the geodesic flow for any unit tangent vector v. Here, assuming that the Riemannian manifold is a D’Atri space, we prove in our main result that ${ \operatorname{tr}}R_{v}^{3}$ is also invariant under the geodesic flow if k≥3. In addition, other properties of Jacobi operators related to the Ledger conditions are obtained, and they are used to give applications to Iwasawa type spaces. In the class of D’Atri spaces of Iwasawa type, we show two different characterizations of the symmetric spaces of noncompact type: they are exactly the $\frak{C}$ -spaces, and on the other hand they are k -D’Atri spaces for some k≥3. In the last case, they are k-D’Atri for all k=1,…,n?1 as well. In particular, Damek–Ricci spaces that are k -D’Atri for some k≥3 are symmetric. Finally, we characterize k-D’Atri spaces for all k=1,…,n?1 as the $\frak{SC}$ -spaces (geodesic symmetries preserve the principal curvatures of small geodesic spheres). Moreover, applying this result in the case of 4 -dimensional homogeneous spaces, we prove that the properties of being a D’Atri (1-D’Atri) space, or a 3-D’Atri space, are equivalent to the property of being a k-D’Atri space for all k=1,2,3.  相似文献   

11.
Some estimates for simultaneous polynomial approximation of a function and its derivatives are obtained. These estimates are exact in a certain sense. In particular, the following result is derived as a corollary: Forf∈C r[?1,1],mN, and anyn≥max{m+r?1, 2r+1}, an algebraic polynomialP n of degree ≤n exists that satisfies $$\left| {f^{\left( k \right)} \left( x \right) - P_n^{\left( k \right)} \left( {f,x} \right)} \right| \leqslant C\left( {r,m} \right)\Gamma _{nrmk} \left( x \right)^{r - k} \omega ^m \left( {f^{\left( r \right)} ,\Gamma _{nrmk} \left( x \right)} \right),$$ for 0≤k≤r andx ∈ [?1,1], where ωυ(f(k),δ) denotes the usual vth modulus of smoothness off (k), and Moreover, for no 0≤k≤r can (1?x 2)( r?k+1)/(r?k+m)(1/n2)(m?1)/(r?k+m) be replaced by (1-x2)αkn2αk-2, with αk>(r-k+a)/(r-k+m).  相似文献   

12.
Let π = (π(1), π(2),…, π(n)) be a permutation on {1, 2, …, n}. A succession (respectively, 1-succession) in π is any pair π(i), π(i + 1), where π(i + 1) = π(i) + 1 (respectively, π(i + 1) ≡ π(i) + 1 (mod n)), i = 1, 2, …, n ? 1. Let R(n, k) (respectively, R1(n, k)) be the number of permutations with k successions (respectively, 1-successions). In this note we determine R(n, k) and R1(n, k). In addition, these notions are generalized to the case of circular permutations, where analogous results are developed.  相似文献   

13.
Let (ks) denote the set of all k-element-subsets of a finite set S. A k-simplical matroid on a subset E of (ks) is a binary matroid the circuit of which are simplicial complexes {X1,…Xm} ? E with boundary 0 (mod 2). The k-simplical matroid on (ks) is called the full simplicial matroid Gk(S). The polygon matroid on the edges of a finite graph is 2-simplicial. Polygon-matroids and their duals are regular. The dual of Gk(S) is Gn?k(S) if the cardinnlity of S is n. More details on simplicial matroids can be found in [3, Chapter 6] and also in [4, pp. 180–181].Welsh asked if every simplicial matroid is regular. We prove that this is not the case, for all full k-simplicial matroids Gk(S) with 3?k?n?3 are non-regular (n is the cardinality of S). This result has also been proved σy R. Cordovil and M. Las Vergnas recently. Their proof is different from our proof, which is somewhat shorter.  相似文献   

14.
A triangle {a(n,k)}0?k?n of nonnegative numbers is LC-positive if for each r, the sequence of polynomials is q-log-concave. It is double LC-positive if both triangles {a(n,k)} and {a(n,nk)} are LC-positive. We show that if {a(n,k)} is LC-positive then the log-concavity of the sequence {xk} implies that of the sequence {zn} defined by , and if {a(n,k)} is double LC-positive then the log-concavity of sequences {xk} and {yk} implies that of the sequence {zn} defined by . Examples of double LC-positive triangles include the constant triangle and the Pascal triangle. We also give a generalization of a result of Liggett that is used to prove a conjecture of Pemantle on characteristics of negative dependence.  相似文献   

15.
Let M n be a compact oriented hypersurface of a unit sphere \(\mathbb{S}^{n + 1} \) (1) with constant mean curvature H. Given an integer k between 2 and n ? 1, we introduce a tensor ? related to H and to the second fundamental form A of M, and show that if |?|2B H,k and tr(? 3) ≤ C n,k |?|3, where B H,k and C n,k are numbers depending only on H, n and k, then either |?|2 ≡ 0 or |?|2B H,k . We characterize all M n with |?|2B H,k . We also prove that if \(\left| A \right|^2 \leqslant 2\sqrt {k(n - k)}\) and tr(? 3) ≤ C n,k |?|3 then |A|2 is constant and characterize all M n with |A|2 in the interval \(\left[ {0,2\sqrt {k\left( {n - k} \right)} } \right] \) . We also study the behavior of |?|2, with the condition additional tr(? 3) ≤ C n,k |?|3, for complete hypersurfaces with constant mean curvature immersed in space forms and show that if sup M |?|2 = B H,k and this supremum is attained in M n then M n is an isoparametric hypersurface with two distinct principal curvatures of multiplicities k y n ? k. Finally, we use rotation hypersurfaces to show that the condition on the trace of ? 3 is necessary in our results; more precisely, for each integer k with 2 ≤ kn ? 1 and \(H \geqslant 1/\sqrt {2n - 1} \) there is a complete hypersurface M n in \(\mathbb{S}^{n + 1} \) (1) with constant mean curvature H such that sup M |?|2 = B H,k , and this supremum is attained in M n , and which is not a product of spheres.  相似文献   

16.
Letk n be the smallest constant such that for anyn-dimensional normed spaceX and any invertible linear operatorTL(X) we have $|\det (T)| \cdot ||T^{ - 1} || \le k_n |||T|^{n - 1} $ . LetA + be the Banach space of all analytic functionsf(z)=Σ k≥0 a kzk on the unit diskD with absolutely convergent Taylor series, and let ‖fA + k≥0κ|; define ? n on $\overline D ^n $ by $ \begin{array}{l} \varphi _n \left( {\lambda _1 ,...,\lambda _n } \right) \\ = inf\left\{ {\left\| f \right\|_{A + } - \left| {f\left( 0 \right)} \right|; f\left( z \right) = g\left( z \right)\prod\limits_{i = 1}^n {\left( {\lambda _1 - z} \right), } g \in A_ + , g\left( 0 \right) = 1 } \right\} \\ \end{array} $ . We show thatk n=sup {? n1,…, λ n ); (λ1,…, λ n )∈ $\overline D ^n $ }. Moreover, ifS is the left shift operator on the space ?∞:S(x 0,x 1, …,x p, …)=(x 1,…,x p,…) and if Jn(S) denotes the set of allS-invariantn-dimensional subspaces of ?∞ on whichS is invertible, we have $k_n = \sup \{ |\det (S|_E )|||(S|_E )^{ - 1} ||E \in J_n (S)\} $ . J. J. Schäffer (1970) proved thatk n≤√en and conjectured thatk n=2, forn≥2. In factk 3>2 and using the preceding results, we show that, up to a logarithmic factor,k n is of the order of √n whenn→+∞.  相似文献   

17.
We determine explicitly the maximal dominant weights for the integrable highest weight \(\widehat {sl}(n)\) -modules V((k ? 1)Λ 0 + Λ s ), 0 ≤ sn ? 1, k ≥ 2. We give a conjecture for the number of maximal dominant weights of V(k Λ 0) and prove it in some low rank cases. We give an explicit formula in terms of lattice paths for the multiplicities of a family of maximal dominant weights of V(k Λ 0). We conjecture that these multiplicities are equal to the number of certain pattern avoiding permutations. We prove that the conjecture holds for k = 2 and give computational evidence for the validity of this conjecture for k > 2.  相似文献   

18.
In their papers (Technical Report CS-TR 50, University of Central Florida, 1980; J. Combin. Theory Ser. B32 (1982), 90–94) Brigham and Dutton introduce the notion of (n : i)-chromatic numbers of a graph, a generalization of Stahl's nth chromatic numbers (J. Combin. Theory Ser. B20, (1976), 185–203). The (n : i)-chromatic number of a graph G, denoted by χni(G), is the smallest integer m such that each vertex of G can be colored with a set of n colors in {1, 2,…, m} in such a way that any two adjacent vertices have exactly i colors in common. Brigham and Dutton conjecture at the end of loc cit that for all integers n and i with 0 ≤ in ? 1, and for every graph G, χni+1(G) ≤ χni(G). We prove this conjecture in some special cases and disprove it in the general case.  相似文献   

19.
Let Ω ?C be an open set with simply connected components and suppose that the functionφ is holomorphic on Ω. We prove the existence of a sequence {φ (?n)} ofn-fold antiderivatives (i.e., we haveφ (0)(z)∶=φ(z) andφ (?n)(z)= (?n?1)(z)/dz for alln ∈ N0 and z ∈ Ω) such that the following properties hold:
  1. For any compact setB ?Ω with connected complement and any functionf that is continuous onB and holomorphic in its interior, there exists a sequence {n k} such that {φ?nk} converges tof uniformly onB.
  2. For any open setU ?Ω with simply connected components and any functionf that is holomorphic onU, there exists a sequence {m k} such that {φ?mk} converges tof compactly onU.
  3. For any measurable setE ?Ω and any functionf that is measurable onE, there exists a sequence {p k} such that {φ (-Pk)} converges tof almost everywhere onE.
  相似文献   

20.
Let χ = {χ n } n=0 be the Haar system normalized in L 2(0, 1) and M = {M s } s=1 be an arbitrary, increasing sequence of nonnegative integers. For any subsystem of χ of the form {φ k } = χS = {χ n } nS , where S = S(M) = {n k } k=1 = {nV[p]: pM}, V[0] = {1, 2} and V[p] = {2 p + 1, 2 p + 2, …, 2 p+1} for p = 1, 2, … a series of the form Σ i=1 a i φ i with a i ↘ 0 is constructed, that is universal with respect to partial series in all classes L r (0, 1), r ∈ (0, 1), in the sense of a.e. convergence and in the metric ofL r (0, 1). The constructed series is universal in the class of all measurable, finite functions on [0, 1] in the sense of a.e. convergence. It is proved that there exists a series by Haar system with decreasing coefficients, which has the following property: for any ? > 0 there exists a measurable function µ(x), x ∈ [0, 1], such that 0 ≤ µ(x) ≤ 1 and |{x ∈ [0, 1], µ(x) ≠ = 1}| < ?, and the series is universal in the weighted space L µ[0, 1] with respect to subseries, in the sense of convergence in the norm of L µ[0, 1].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号