首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
An improved diffuse interface (DI) method is proposed for accurately capturing complex interface deformation in simulations of three-dimensional (3D) multiphase flows. In original DI methods, the unphysical phenomenon of interface thickening or blurring can affect the accuracy of numerical simulations, especially for flows with large density ratio and high Reynolds number. To remove this drawback, in this article, an interface-compression term is introduced into the Cahn-Hilliard equation to suppress the interface dispersion. The additional term only takes effect in the interface region and works normal to the interface. The difference of the current method from the previous work is that the compression rate can be adjusted synchronously according to the magnitude of local vorticity, which is strongly correlated to the interface dispersion and changes with the computational time and interface position. Numerical validations of the proposed method are implemented by simulating problems of Laplace law, Rayleigh-Taylor instability, bubble rising in a channel, and binary droplet collision. The obtained results agree well with the analytical solutions and published data. The numerical results show that the phenomenon of interface dispersion is suppressed effectively and the tiny interfacial structures in flow field can be captured accurately.  相似文献   

3.
A method for the numerical simulation of the dynamic response of the contact angle is presented and its development discussed. The proposed method was developed within a level-set framework by modelling forced capillary flows and it is based on the introduction of a force function to capture the balance of forces in the contact region between solid boundaries and a diffuse free-surface fluid interface. The proposed approach allows the system to define its own dynamic contact angle and its own contact line dynamics, without introducing numerical discontinuities such as locally prescribed angles or slip-length. The method was developed through numerical testing and comparisons with experimental and empirical models reported in the literature. These showed the validity of the proposed approach, which was able to reproduce the experimental correlation between the capillary number and the dynamic contact angle reported by [R.L. Hoffman, Study of advancing interface. 1. Interface shape in liquid-gas systems, J. Colloid Interf. Sci. 50 (1975) 228-241]. By using a single constitutive model for the force function, the simulation results of the dynamic contact angle showed an excellent agreement with the values predicted by Jiang’s empirical equation [T.S. Jiang, O.H. Soo-Gun, J.C. Slattery, Correlation for dynamic contact angle, J. Colloid Interf. Sci. 69 (1979) 74-77] through different material properties and flow speeds. The proposed approach also demonstrated the ability to work with meshes of low resolution.  相似文献   

4.
5.
6.
A 3D phase field model is developed to investigate the electrohydrodynamic (EHD) two phase flows. The explicit finite difference method, enhanced by parallel computing, is employed to solve the coupled nonlinear governing equations for the electric field, the fluid flow field and free surface deformation. Numerical tests indicate that an appropriate interpolation of densities within the interface is critical in ensuring numerical stability for highly stratified flows. The 3D phase field model compares well with the Taylor theory for the deformation of a single dielectric droplet in an electric field. Computed results show that the deformation of a leaky dielectric droplet in an electric field undergoes various stages before it reaches the final oblate shape. This is caused by the free charge relaxation near the fluid–fluid interface. The coalescence of four droplets in an electric field illustrates a truly 3D deformation behavior and a complex evolving fluid flow field associated with the participating droplets. The coalescence is a result of combined actions produced by the global electric force, the circulatory flows generated by the local electrohydrodynamic stress and the electrically-induced deformation. The 3D phase field model is also applied in modeling of an electrohydrodynamic patterning process for manufacturing nanoscaled structures, in which complex 3D flow structures develop as the electrically-induced deformation evolves.  相似文献   

7.
8.
The marker‐density‐function (MDF) method has been developed to conduct direct numerical simulation (DNS) for bubbly flows. The method is applied to turbulent bubbly channel flows to elucidate the interaction between bubbles and wall turbulence. The simulation is designed to clarify the structure of the turbulent boundary layer containing microbubbles and the mechanism of frictional drag reduction. It is deduced from the numerical tests that the interaction between bubbles and wall turbulence depends on the Weber and Froude numbers. The reduction of the frictional resistance on the wall is attained and its mechanism is explained from the modulation of the three‐dimensional structure of the turbulent flow. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
The present simulation investigates the multiphase cavitating flow around an underwater projectile. Based on the Homogeneous Equilibrium Flow assumption, a mixture model is applied to simulate the multiphase cavitating flow including ventilated cavitation caused by air injection as well as natural cavitation that forms in a region where the pressure of liquid falls below its vapor pressure. The transport equation cavitating model is applied. The calculations are executed based on a suite of CFD code. The hydrodynamics characteristics of flow field under the interaction of natural cavitation and ventilated cavitation is analyzed. The results indicate that the ventilated cavitation number is under a combined effect of the natural cavitation number and gas flow rate in the multiphase cavitating flows.  相似文献   

10.
Direct numerical simulation of compressible turbulent flows   总被引:3,自引:0,他引:3       下载免费PDF全文
This paper reviews the authors' recent studies on compressible turbulence by using direct numerical simulation (DNS),including DNS of isotropic(decaying) turbulence, turbulent mixing-layer,turbulent boundary-layer and shock/boundary-layer interaction.Turbulence statistics, compressibility effects,turbulent kinetic energy budget and coherent structures are studied based on the DNS data.The mechanism of sound source in turbulent flows is also analyzed. It shows that DNS is a powerful tool for the mechanistic study of compressible turbulence.  相似文献   

11.
Direct numerical simulations of 2D driven cavity flows have been performed. The simulations exhibit that the flow converges to a periodically oscillating state at Re=11,000, and reveal that the dynamics is chaotic at Re=22,000. The dimension of the attractor and the Kolmogorov entropy have been computed. Explicit time-integration techniques are discussed.  相似文献   

12.
Our works on the fictitious domain method for the direct numerical simulation of particulate flows are reviewed, and particularly our recent progresses in the simulations of the motion of particles in Poiseuille flow at moderately high Reynolds numbers are reported. The method is briefly described, and its capability to simulate the motion of spherical and non-spherical particles in Newtonian, non-Newtonian and non-isothermal fluids is demonstrated. In addition, the applications of the fictitious domain method reported in the literature are also reviewed, and some comments on the features of the fictitious domain method and the immersed boundary method are given.  相似文献   

13.
14.
Examples of numerical calculations of isothermal flows of two-phase two-component mixtures based on the density-functional method are presented. Using this method, the following problems are calculated in the two-dimensional formulation: drop impact on a liquid layer, drop rupture in a Couette flowfield, wetting-angle formation for a drop on a solid surface, development of Rayleigh-Taylor and Kelvin-Helmholtz instability on a gas-liquid interface.Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 6, 2004, pp. 101–114.Original Russian Text Copyright © 2004 by Demyanov and Dinariev.  相似文献   

15.
We present a detailed theory for infiltration, which accounts for a general model for the dynamic contact angle between the droplet and the porous medium as well as contact angle hysteresis, and analyze the resulting equations of motion. The theory shows that infiltration of droplets into dry porous media involves three phases due to contact angle hysteresis: (1) An increasing drawing area (IDA) phase during which the interface between the droplet and the porous medium increases, (2) a constant drawing area (CDA) phase during which the contact line of the droplet remains pinned, and (3) a decreasing drawing area (DDA) phase. The theory is based on the following assumptions: (1) The droplet has the shape of a spherical cap, (2) the porous medium consists of a bundle of vertical tubes of same size, and (3) the pressure within the droplet is uniform. We find that infiltration always consists of a cascade process formed by the IDA, CDA, and DDA phases, where the entire process may begin or end in any of the three phases. The entire process is formulated with four nondimensional parameters: Three contact angles (initial, advancing, and receding) and a porous permeability parameter. A comparison of our theory to experimental data suggests that one should use different parameterizations for the dynamic contact angle models of the IDA and DDA phases. In general, the IDA and DDA phases are described by integro-differential equations. A numerical-solution approach is presented for solving the dynamic equations for infiltration. The total time of infiltration and the time dependence of drawing area are critically affected by the occurrence of the IDA, CDA, and DDA phases as well as by the permeability. With ordinary differential equations (ODEs), we are able to approximate the IDA phase and to describe exactly infiltration processes that start out with the CDA or DDA phase.  相似文献   

16.
17.
18.
气固两相流模拟中,当固相尺度接近或大于Kolmogorov尺度时,普通的点源模型将不再适用,固体相的体积效应和表面效应将对流体相产生显著的影响。通过采用直接数值模拟方法,结合内嵌边界方法对湍流中不同湍流强度流体横掠大于Kolmogorov尺度的固相颗粒进行了全尺度模拟,讨论分析了在两种湍流度下方形颗粒对湍流的调制影响以及颗粒的受力情况。  相似文献   

19.
Direct numerical simulations (DNS) of incompressible turbulent channel flows coupled with Lagrangian particle tracking are performed to study the characteristics of ejections that surround solid particles. The behavior of particles in dilute turbulent channel flows, without particle collisions and without feedback of particles on the carrier fluid, is studied using high Reynolds number DNS (Re = 12,500). The results show that particles moving away from the wall are surrounded by ejections, confirming previous studies on this issue. A threshold value separating ejections with only upward moving particles is established. When normalized by the square root of the Stokes number and the square of the friction velocity, the threshold profiles follow the same qualitative trends, for all the parameters tested in this study, in the range of the experiments. When compared to suspension thresholds proposed by other studies in the Shields diagram, our simulations predict a much larger value because of the measure used to characterize the fluid and the criterion chosen to decide whether particles are influenced by the surrounding fluid. However, for intermediate particle Reynolds numbers, the threshold proposed here is in fair agreement with the theoretical criterion proposed by Bagnold (1966) [Bagnold, R., 1966. Geological Survey Professional Paper, vol. 422-1]. Nevertheless, further studies will be conducted to understand the normalization of the threshold.  相似文献   

20.
In this series of two papers, we present a front-tracking method for the numerical simulation of first-contact miscible gas injection processes. The method is developed for constructing very accurate (or even exact) solutions to one-dimensional initial-boundary-value problems in the form of a set of evolving discontinuities. The evolution of the discontinuities is given by analytical solutions to Riemann problems. In this paper, we present the mathematical model of the problem and the complete Riemann solver, that is, the analytical solution to the one-dimensional problem with piecewise constant initial data separated by a single discontinuity, for any left and right states. The Riemann solver presented here is the building block for the front-tracking/streamline method described and applied in the second paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号