首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
采用密度泛函理论(DFT)研究了杂原子M(M=Li, Na, K, Be, Mg, Ca, C和Si)在B/N单空位缺陷处的掺杂对(6,0)BN纳米管体系非线性光学性质的影响. 采用B3LYP方法共得到了14种几何构型, 并采用BHandHLYP方法计算了这些结构的第一超极化率β0值. 研究结果表明, 单纯的B或N缺陷几乎不影响BN纳米管体系的非线性光学性质; 与B缺陷处掺杂的体系相比, 杂原子在N缺陷处的掺杂更有利于提高BN纳米管体系的第一超极化率β0值; 对于同周期掺杂原子, 还原性越强的原子掺杂对BN纳米管体系的第一超极化率β0值的改善越明显, 表现为β0(Ⅰ族)>β0(Ⅱ族)>β0(Ⅳ族); 对比同主族掺杂原子, 第三周期元素Na和Mg的掺杂能更有效地提高体系的第一超极化率β0值, 原因主要在于原子半径和还原性等因素共同决定其对BN纳米管体系第一超极化率β0值的改善程度. 本文研究结果为有效提高BN纳米管体系的非线性光学性质提供了一种新思路, 为基于BN纳米管的非线性光学材料设计提供了有价值的理论信息.  相似文献   

2.
Understanding the chemistry of BNNT is a crucial step toward their ultimate practical use. A comparative study of Reactions A (ASWCNT (5,5) and CCl2) and B (ASWBNNT (5,5) and CCl2) have been performed by using ONIOM (B3LYP/6-31G*: AM1) method in Gaussian03 program package. The results show that (1) the two reactions are both exothermic; (2) the mechanism of Reaction B is a two-step mechanism; (3) the difference in energy barriers suggests that the reaction of CCl2 with BNNT is easier than with CNT; (4) in reaction B, CCl2 prefers to attack the boron atom of BNNT first.  相似文献   

3.
王若曦 《化学学报》2010,68(4):315-319
为了探索氮化硼纳米管(BNNT)在化学传感器件领域的潜在应用,我们利用密度泛函理论研究了(8,0)单壁BNNT和硅掺杂的(8,0)BNNT对毒性气体氯化氰分子(ClCN)的吸附性能.结果表明,硼位或氮位硅掺杂的BNNT,均对ClCN分子存在较强的化学吸附,而纯氮化硼纳米管对ClCN仅有较弱的物理吸附.态密度的计算进一步表明硅掺杂使纳米管费米能级附近的电子结构发生显著变化,由于杂化态的引入,使带隙明显减小,增强了对毒性ClCN分子的吸附敏感性.硅掺杂的BNNT有望成为检测毒性ClCN分子的潜在资源.  相似文献   

4.
外电场下氮化铝分子结构和光谱研究   总被引:9,自引:0,他引:9  
黄多辉  王藩侯  朱正和 《化学学报》2008,66(13):1599-1603
以6-311+G(2DF)为基函数, 采用密度泛函B3P86的方法研究了外电场作用下氮化铝(AlN)基态分子的几何结构、HOMO能级、LUMO能级、能隙及谐振频率. 结果表明, 外电场的大小和方向对AlN分子基态的这些性质有明显影响. 在所加的电场范围内, 随着外电场的增大分子键长减小, 谐振频率增大, 总能量升高, 在F=0.02 a.u.时能量达到最大, 为-297.4217 a.u., 此后继续增大电场强度, 系统总能量则开始降低; EH 和EL 随着电场的增加均逐渐增大, 在 F=0.01 a.u.时, EH 和EL均取得最大值, 分别为-0.2776和-0.0828 a.u., 随着电场的继续增大, 能级EH和EL均逐渐减小, 而能隙在外电场增大的过程中始终处于减小趋势.  相似文献   

5.
The influence of hexagonal boron nitride (h-BN) on the network structure and properties of poly(dimethylsiloxane) networks was investigated. A silane coupling reaction occurs during the preparation of materials to fix the filler to the network. The composite materials display a reduction in bulk network cross-linking and increase in hydrogen bonding interactions when compared to the unfilled material. Consequently, the tensile modulus is enhanced, the tan-delta decreases and compression set resistance diminishes. The in situ silane coupling reaction does not impact the expected thermal conductivity of the material and the inclusion of h-BN leads to materials with decreased coefficient of thermal expansion.  相似文献   

6.
Phosgene (COCl2), a valuable industrial compound, maybe a public safety and health risk due to potential abuse and possible accidental spillage. Conventional techniques suffer from issues related to procedural complexity and sensitivity. Therefore, there is a need for the development of simple and highly sensitive techniques that overcome these challenges. Recent advances in nanomaterials science offer the opportunity for the development of such techniques by exploiting the unique properties of these nanostructures. In this study, we investigated the potential of six types of nanomaterials: three carbon-based ([5,0] CNT, C60, C70) and three boron nitride-based (BNNT, BN60, BN70) for the detection of COCl2. The local density approximation (LDA) approach of the density functional theory (DFT) was used to estimate the adsorption characteristics and conductivities of these materials. The results show that the COCl2 molecule adsorbed spontaneously on the Fullerene or nanocages and endothermically on the pristine zigzag nanotubes. Using the magnitude of the bandgap modulation, the order of suitability of the different nanomaterials was established as follows: PBN60 (0.19%) < PC70 (1.39%) < PC60 (1.77%) < PBNNT (27.64%) < PCNT (65.29%) < PBN70 (134.12%). Since the desired criterion for the design of an electronic device is increased conductivity after adsorption due to the resulting low power consumption, PC60 was found to be most suitable because of its power consumption as it had the largest decrease of 1.77% of the bandgap.  相似文献   

7.
电场对(4, 0)Zigzag模型单壁碳纳米管的影响   总被引:1,自引:0,他引:1  
The structural and electronic properties of a (4, 0) zigzag single-walled carbon nanotube (SWCNT) under parallel and transverse electric fields with strengths of 0-1.4×10~(-2) a.u. Were studied using the density functional theory (DFT) B3LYP/6-31G~* method. Results show that the properties of the SWCNT are dependent on the external electric field. The applied external electric field strongly affects the molecular dipole moments. The induced dipole moments increase linearly with increase in the electrical field intensities. This study shows that the application of parallel and transverse electric fields results in changes in the occupied and virtual molecular orbitals (Mos) but the energy gap between the highest occupied MO (HOMO) and the lowest unoccupied MO (LUMO) of this SWCNT is less sensitive to the electric field strength. The electronic spatial extent (ESE) and length of the SWCNT show small changes over the entire range of the applied electric field strengths. The natural bond orbital (NBO) electric charges on the atoms of the SWCNT show that increase in the external electric field strength increases the separation of the center of the positive and negative electric charges of the carbon nanotube.  相似文献   

8.
Dotting the i's : Stimuli‐responsive optoelectronic devices are formed from the title transistors functionalized with photoactive quantum dots. The p‐type semiconducting tubes show a fast current decrease under UV irradiation and reversibility when the UV irradiation is switched off. In contrast, ambipolar tubes show mirror‐image photoswitching effects when negative and positive gate bias voltages are applied.

  相似文献   


9.
A mixture of bulk hexagonal boron nitride (h‐BN) with hydrazine, 30 % H2O2, HNO3/H2SO4, or oleum was heated in an autoclave at 100 °C to produce functionalized h‐BN. The product formed stable colloid solutions in water (0.26–0.32 g L ?1) and N,N‐dimethylformamide (0.34–0.52 g L ?1) upon mild ultrasonication. The yield of “soluble” h‐BN reached about 70 wt %. The dispersions contained few‐layered h‐BN nanosheets with lateral dimensions in the order of several hundred nanometers. The functionalized dispersible h‐BN was characterized by IR spectroscopy, X‐ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV/Vis spectroscopy, X‐ray diffraction (XRD), dynamic light scattering (DLS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM). It is shown that h‐BN preserves its hexagonal structure throughout the functionalization procedure. Its exfoliation into thin platelets upon contact with solvents is probably owing to the attachment of hydrophilic functionalities.  相似文献   

10.
雷红文  张红 《结构化学》2011,30(7):1037-1043
We studied the co-adsorption of hydrogen molecule and ions (Li,K,Mg,Ca) inside the single-walled carbon nanotubes (SWNTs) by using density-functional theory (DFT).The band structures (BS),density of states (DOS),charge transfer and difference charge density are presented.We discussed the interaction between the ions (Li,K,Mg,Ca) and H 2.Meanwhile,the binding energy indicates that ionization can increase the adsorption energy of H 2 in CNT.  相似文献   

11.
Single crystals of oxidephosphates MTi2O2(PO4)2 [M: Fe (dark red), Co (pinkish red), Ni (green)] with edge‐lengths up to 0.4 mm were grown by chemical vapour transport. FeTi2O2(PO4)2 and CoTi2O2(PO4)2 are isotypic to NiTi2O2(PO4)2. The crystal structure of the latter was previously solved from powder data [FeTi2O2(PO4)2 (data for CoTi2O2(PO4)2 and NiTi2O2(PO4)2 in brackets): monoclinic, P21/c, Z = 2, a = 7.394(3) (7.381(6), 7.388(4)) Å, b = 7.396(2) (7.371(5), 7.334(10)) Å, c = 7.401(3) (7.366(6), 7.340(3)) Å, β = 120.20(3) (120.26(6), 120.12(4))°, R1 = 0.0393 (0.0309, 0.0539) wR2 = 0.1154 (0.0740, 0.1389), 2160 (1059, 1564) independent reflections, 75 (76, 77) variables]. The single‐crystal study allowed improved refinement using anisotropic displacement parameters, yielded lower standard deviations for the structural parameters and revealed a small amount of cation disordering. Twinning and cation disordering within the structures are rationalized by a detailed crystallographic classification of the MTi2O2(PO4)2 structure type in terms of group‐subgroup relations. The structure is characterized by a three‐dimensional network of [PO4] tetrahedra and [MIITi2O12] groups formed by face‐sharing of [MIIO6] and [TiO6] octahedra. Electronic absorption spectra of MTi2O2(PO4)2 in the UV/VIS/NIR region show rather large ligand‐field splittings for the strongly trigonally distorted chromophors [MIIO6] (M = Fe, Co, Ni) with interelectronic repulsion parameters beeing slightly smaller than in other phosphates. Interpretation of the spectra within the framework of the angular overlap model reveals a significant second‐sphere ligand field effect of TiIV ions on the electronic levels of the NiII and CoII.  相似文献   

12.
《Electroanalysis》2004,16(17):1451-1458
A new carbon electrode material, obtained by mixing single wall carbon nanotubes (SWNTs) with a mineral oil binder is studied. Carbon nanotube pastes show the special properties of carbon nanotubes combined with the various advantages of composite electrodes such as a very low capacitance (background current) and the possibility of an easy preparation, modification and renewal. A better knowledge of the characteristics of electrode reactions at carbon nanotube paste (CNTP) electrodes was obtained studying the electron transfer rates of various redox couples under different pretreatment conditions. A critical comparison with carbon paste (CP), platinum (Pt) and glassy carbon (GC) electrodes was also carried out. Capacitance and resistance values were also calculated for all electrodes investigated. Both untreated and treated CNTP electrodes showed a low resistance while the capacitance was markedly reduced with CNTP electrodes previously treated with concentrated nitric acid. An electrochemical pretreatment on CNTP electrodes was developed which showed an excellent result towards two‐electron quinonic structure species. After this treatment the heterogeneous standard rate constants for p‐methylaminophenol sulfate (MAP) and dopamine resulted to be significantly higher (2.1×10?2 cm/s and 2.0×10?2 cm/s, respectively) than those obtained with the other electrodes studied. Reproducibility, stability and storage characteristics of CNTP electrodes were also reported.  相似文献   

13.
In this work, based on the density functional theory, the interaction of vitamins A, B1, C, B3 and D with (5, 5) armchair and (9, 0) zigzag single-walled boron nitride nanotubes (BNNTs) are studied. It is found that binding of vitamins A, B1, C, B3 and D with (9, 0) and (5, 5) BNNTs is thermodynamically favorable. Calculated solvation energies show that the solubility of functionalized (9, 0) BNNTs is higher than that of functionalized (5, 5) BNNT, and both dissolutions in water are spontaneous. The results showed that BNNTs can act as a suitable drug delivery vehicle for vitamins A, B1, C, B3 and D within biological systems. This study may provide a new insight into the development of the functionalized boron nitride nanotubes as drug delivery systems for virtual applications.  相似文献   

14.
First‐principles DFT calculations are carried out to study the changes in structures and electronic properties of two‐dimensional single‐layer graphene in the presence of non‐covalent interactions induced by carbon and boron fullerenes (C60, C70, C80 and B80). Our study shows that larger carbon fullerene interacts more strongly than the smaller fullerene, and boron fullerene interacts more strongly than that of its carbon analogue with the same nuclearity. We find that van der Waals interactions play a major role in governing non‐covalent interactions between the adsorbed fullerenes and graphene. Moreover, a greater extent of van der Waals interactions found for the larger fullerenes, C80 and B80, relative to smaller C60, and consequently, results in higher stabilisation. We find a small amount of electron transfer from graphene to fullerene, which gives rise to a hole‐doped material. We also find changes in the graphene electronic band structures in the presence of these surface‐decorated fullerenes. The Dirac cone picture, such as that found in pristine graphene, is significantly modified due to the re‐hybridisation of graphene carbon orbitals with fullerenes orbitals near the Fermi energy. However, all of the composites exhibit perfect conducting behaviour. The simulated absorption spectra for all of the graphene–fullerene hybrids do not exhibit a significant change in the absorption peak positions with respect to the pristine graphene absorption spectrum. Additionally, we find that the hole‐transfer integral between graphene and C60 is larger than the electron‐transfer integrals and the extent of these transfer integrals can be significantly tuned by graphene edge functionalisation with carboxylic acid groups. Our understanding of the non‐covalent functionalisation of graphene with various fullerenes would promote experimentalists to explore these systems, for their possible applications in electronic and opto‐electronic devices.  相似文献   

15.
16.
The reaction of hexachlorophosphazene, P3N3Cl6, with SO3 leads to the new sulfur nitride oxide S6N2O15. The compound displays an extraordinarily low nitrogen content and exhibits a bicyclic cage structure according to the formulation N{S(O)2O(O)2S}3N, with both nitrogen atoms in trigonal planar coordination of sulfur atoms. Interestingly, the new nitride oxide can be also seen as the anhydride of nitrido‐tris‐sulfuric acid, N(SO3H)3.  相似文献   

17.
In the present work, density functional theory calculations are used to investigate the healing mechanism of a N‐vacancy defect in boron nitride nanosheet (BNNS) or nanotube (BNNT) with a CH2 molecule. The healing process starts with the chemisorption of CH2 at the defect site, followed by its dehydrogenation over the surface. Next, a H2 molecule is produced which can be easily released from the surface due to its small adsorption energy. For the dehydrogenation of CH2 molecule over the defective BNNS or BNNT, the first C? H bond dissociation is the rate determining step. Our results indicate that the dehydrogenation of CH2 over BNNS is both thermodynamically and kinetically more favorable than over BNNT. Besides, this study proposes a novel method for achieving C‐doped BNNSs and BNNTs. Given that the healing process proceeds without using a metal catalyst, therefore, no any purification is needed to remove the catalyst.  相似文献   

18.
A heterogeneous photocatalyst system that consists of a ruthenium complex and carbon nitride (C3N4), which act as the catalytic and light‐harvesting units, respectively, was developed for the reduction of CO2 into formic acid. Promoting the injection of electrons from C3N4 into the ruthenium unit as well as strengthening the electronic interactions between the two units enhanced its activity. The use of a suitable solvent further improved the performance, resulting in a turnover number of greater than 1000 and an apparent quantum yield of 5.7 % at 400 nm. These are the best values that have been reported for heterogeneous photocatalysts for CO2 reduction under visible‐light irradiation to date.  相似文献   

19.
Porous boron nitride (BN), a combination of hexagonal, turbostratic and amorphous BN, has emerged as a new platform photocatalyst. Yet, this material lacks photoactivity under visible light. Theoretical studies predict that tuning the oxygen content in oxygen-doped BN (BNO) could lower the band gap. This is yet to be verified experimentally. We present herein a systematic experimental route to simultaneously tune BNO's chemical, magnetic and optoelectronic properties using a multivariate synthesis parameter space. We report deep visible range band gaps (1.50–2.90 eV) and tuning of the oxygen (2–14 at.%) and specific paramagnetic OB3 contents (7–294 a.u. g−1). Through designing a response surface via a design of experiments (DOE) process, we have identified synthesis parameters influencing BNO's chemical, magnetic and optoelectronic properties. We also present model prediction equations relating these properties to the synthesis parameter space that we have validated experimentally. This methodology can help tailor and optimise BN materials for heterogeneous photocatalysis.  相似文献   

20.
张相雄  陈民 《物理化学学报》2001,30(7):1208-1214
采用分子动力学模拟方法研究了强度为4.0-40.0 V·nm-1的均匀电场对过冷水冰晶结构和冰晶生长速率的影响. 文中通过CHILL 算法来识别不同的冰相结构,通过拟合Avrami 公式来得到冰晶生长所需的特征时间. 结果表明,在所施加的电场强度范围内生成的冰相以立方冰为主. 随着电场强度的增加,形成的立方冰的变形程度逐渐增大,冰晶的密度从0.98 g·cm-3 增加到1.08 g·cm-3,同时冰晶生长的特征时间从5.153 ns 减小到0.254 ns,冰晶生长的速率逐渐增长. 对水分子的动力学分析表明,冰晶生长速率增加的部分原因是电场能够促进水分子运动到形成冰晶所需要的取向. 此外,对冰相分子形成过程的分析表明缺陷冰分子在冰晶的生长过程中扮演着中间态的角色. 随电场强度的增加,由缺陷冰转变为立方冰的比例增长的速率逐渐提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号