首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, uncoated paper was characterized. Three-dimensional structure of the layer was reconstructed using imaging results of micro-CT scanning with a relatively high resolution \((0.9~\upmu \hbox {m})\). Image analysis provided the pore space of the layer, which was used to determine its porosity and pore size distribution. Representative elementary volume (REV) size was determined by calculating values of porosity and permeability values for varying domain sizes. We found that those values remained unchanged for domain sizes of \(400\times 400\times 150\,\upmu \hbox {m}^{3}\) and larger; this was chosen as the REV size. The determined REV size was verified by determining capillary pressure–saturation Open image in new window imbibition curves for various domain sizes. We studied the directional dependence of Open image in new window curves by simulating water penetration into the layer from various directions. We did not find any significant difference between Open image in new window curves in different directions. We studied the effect of compression of paper on Open image in new window curves. We found that up to 30% compression of the paper layer had very small effect on the Open image in new window curve. Relative permeability as a function of saturation was also calculated. Water penetration into paper was visualized using confocal laser scanning microscopy. Dynamic visualization of water flow in the paper showed that water moves along the fibers first and then fills the pores between them.  相似文献   

2.
In this paper we study the local integrability and linearizability of quadratic three dimensional systems of the form First, we obtain necessary and sufficient conditions for the complete integrability and linearizability of this system. Then, we discuss the problem of existence of one first integral of the form \(\psi ^{(1)}(x,y,z)=xy+O(|x,y,z|^3)\). Computation of resonant focus quantities and the decomposition of the variety of the ideal that they generate in the ring of polynomials of parameters \(a_{ij},b_{ij},c_{ij}\) of the system were used to obtain necessary conditions of integrability and linearizability. The theory of Darboux integrability and some other methods are used to show the sufficiency. In the investigation of the conditions for the existence of one first integral the decomposition of the variety mentioned above was performed using modular computations, its consequences are discussed.
  相似文献   

3.
We investigate experimentally the effect of aspect ratio ( ) on the time-varying, three-dimensional flow structure of flat-plate wings rotating from rest at 45° angle of attack. Plates of = 2 and 4 are tested in a 50 % by mass glycerin–water mixture, with a total rotation of ? = 120° and a matched tip Reynolds number of 5,000. The time-varying, three-component volumetric velocity field is reconstructed using phase-locked, phase-averaged stereoscopic digital particle image velocimetry in multiple, closely-spaced chordwise planes. The vortex structure is analyzed using the $\mathcal{Q}$ -criterion, helicity density, and spanwise quantities. For both s, the flow initially consists of a connected and coherent leading-edge vortex (LEV), tip vortex (TV), and trailing-edge vortex (TEV) loop; the LEV increases in size with span and tilts aft. Smaller, discrete vortices are present in the separated shear layers at the trailing and tip edges, which wrap around the primary TEV and TV. After about ? = 20°, the outboard-span LEV lifts off the plate and becomes arch-like. A second, smaller LEV and the formation of corner vortex structures follow. For = 4, the outboard LEV moves farther aft, multiple LEVs form ahead of it, and after about ? = 50° a breakdown of the lifted-off LEV and the TV occurs. However, for = 2, the outboard LEV lift-off is not progressive, and the overall LEV-TV flow remains more coherent and closer to the plate, with evidence of breakdown late in the motion. Inboard of about 50 % span, the = 4 LEV is stable for the motion duration. Up to approximately 60 % span, the = 2 LEV is distinct from the TV and is similarly stable. The = 2 LEV exhibits substantially higher spanwise vorticity and velocity. The latter possesses a “four-lobed” distribution at the periphery of the LEV core having adjacent positive (outboard) and negative (inboard) components, corresponding to a helical streamline structure. Both s show substantial root-to-tip velocity aft of the stable LEV, which drives outboard spanwise vorticity flux; flux toward the root is also present in the front portion of the LEV. For = 2, there is a strong flux of spanwise vorticity from the outboard LEV to the tip, which may mitigate LEV lift-off and is not found for = 4. The TV circulation for each is similar in magnitude and growth when plotted versus the chord lengths travelled by the tip, prior to breakdown. Streamwise vorticity due to the TV induces high spanwise velocity, and for = 2, the tilted LEV creates further streamwise vorticity which corresponds well to spanwise-elongated regions of spanwise velocity. For = 2, the TV influences a relatively greater portion of the span and is more coherent at later times, which coupled with the tilted LEV strongly contributes to the higher overall spanwise velocity and vorticity flux.  相似文献   

4.
The effect of mechanical properties of erythrocytes on the near-wall motion of platelets was numerically studied with the immersed boundary method. Cells were modeled as viscous-fluid-filled capsules surrounded by hyper-elastic membranes with negligible thickness. The numerical results show that with the increase of hematocrit, the near-wall approaching of platelets is enhanced, with which platelets exhibit larger deformation and orientation angle of its near-wall tank-treading motion, and the lateral force pushing platelets to the wall is increased with larger fluctuation amplitude. Meanwhile the near-wall approaching is reduced by increasing the stiffness of erythrocytes.  相似文献   

5.
The homogenized response of metal matrix composites(MMC) is studied using strain gradient plasticity.The material model employed is a rate independent formulation of energetic strain gradient plasticity at the micro scale and conventional rate independent plasticity at the macro scale. Free energy inside the micro structure is included due to the elastic strains and plastic strain gradients. A unit cell containing a circular elastic fiber is analyzed under macroscopic simple shear in addition to transverse and longitudinal loading. The analyses are carried out under generalized plane strain condition. Micro-macro homogenization is performed observing the Hill-Mandel energy condition,and overall loading is considered such that the homogenized higher order terms vanish. The results highlight the intrinsic size-effects as well as the effect of fiber volume fraction on the overall response curves, plastic strain distributions and homogenized yield surfaces under different loading conditions. It is concluded that composites with smaller reinforcement size have larger initial yield surfaces and furthermore,they exhibit more kinematic hardening.  相似文献   

6.
The hydroelastic analysis and sonoelastic analysis methods are incorporated with the Green's function of the Pekeris ocean hydro-acoustic waveguide model to produce a three-dimensional sonoelastic analysis method for ships in the ocean hydro-acoustic environment. The seabed condition is represented by a penetrable boundary of prescribed density and sound speed. This method is employed in this paper to predict the vibration and acoustic radiation of a 1 500 t Small Water Area Twin Hull (SWATH) ship in shallow sea acoustic environment. The wet resonant frequencies and radiation sound source levels are predicted and compared with the measured results of the ship in trial.  相似文献   

7.
A new numerical technique named interval finite difference method is proposed for the steady-state temperature field prediction with uncertainties in both physical parameters and boundary conditions. Interval variables are used to quantitatively describe the uncertain parameters with limited information. Based on different Taylor and Neumann series, two kinds of parameter perturbation methods are presented to approximately yield the ranges of the uncertain temperature field. By comparing the results with traditional Monte Carlo simulation, a numerical example is given to demonstrate the feasibility and effectiveness of the proposed method for solving steady-state heat conduction problem with uncertain-but-bounded parameters.  相似文献   

8.
The problem of penetrative convection in a fluid saturated porous medium heated internally is analysed. The linear instability theory and nonlinear energy theory are derived and then tested using three dimensions simulation.Critical Rayleigh numbers are obtained numerically for the case of a uniform heat source in a layer with two fixed surfaces. The validity of both the linear instability and global nonlinear energy stability thresholds are tested using a three dimensional simulation. Our results show that the linear threshold accurately predicts the onset of instability in the basic steady state. However, the required time to arrive at the basic steady state increases significantly as the Rayleigh number tends to the linear threshold.  相似文献   

9.
The present study focuses on the analysis of free vibrations of axisymmetric functionally graded hollow spheres. The material is assumed to be graded in radial di- rection with a simple power law. Matrix Frrbenious method of extended power series is employed to derive the analytical solutions for displacement, temperature, and stresses. The dispersion relations for the existence of various types of pos- sible modes of vibrations in the considered hollow sphere are derived in a compact form. In order to explore the character- istics of vibrations, the secular equations are further solved by using fixed point iteration numerical technique with the help of MATLAB software. The numerical results have been presented graphically for polymethyl methecrylate materials in respect of natural frequencies, frequency shift, inverse quality factor, displacement, temperature change, and radial stress.  相似文献   

10.
In this paper, the coupled extension and thickness- twist vibrations are studied for AT-cut quartz plates under Lateral Field Excitation (LFE) with variations along the x1- direction. Mindlin's two-dimensional equations are used for anisotropic crystal plates. Both free and electrically forced vibrations are considered. Important vibration characteristics are obtained, including dispersion relations, frequency spectra, and motional capacitances. It is shown that, to avoid the effects of the couplings between extension and thickness-twist vibrations, a series of discrete values of the length/thickness ratio of the crystal plate need to be excluded. The results are of fundamental significance for the design of LFE resonators and sensors.  相似文献   

11.
An exact-designed mesh shape with favorable surface accuracy is of practical significance to the performance of large cable-network antenna reflectors. In this study, a novel design approach that could guide the generation of exact spatial parabolic mesh configurations of such reflector was proposed. By incorporating the traditional force density method with the standard finite element method, this proposed approach had taken the deformation effects of flexible ring truss supports into consideration, and searched for the desired mesh shapes that can satisfy the requirement that all the free nodes are exactly located on the objective paraboloid. Compared with the conventional design method,a remarkable improvement of surface accuracy in the obtained mesh shapes had been demonstrated by numerical examples. The present work would provide a helpful technical reference for the mesh shape design of such cable-network antenna reflector in engineering practice.  相似文献   

12.
Based on vibration analysis, single-layered graphene sheet (SLGS) with multiple attached nanoparticles is developed as nanoscale mass sensor in thermal environments. Graphene sensors are assumed to be in simplysupported configuration. Based on the nonlocal plate the- ory which incorporates size effects into the classical theory, closed-form expressions lot the frequencies and relative fre- quency shills of SLGS-based mass sensor are derived using the Galerkin method. The suggested model is justified by a good agreement between the results given by the present model and available data in literature. The effects of tem- perature difference, nonlocal parameter, the location of the nanoparticle and the number of nanoparticles on the relative frequency shift of the mass sensor are also elucidated. The obtained results show that the sensitivity of the SLGS- based mass sensor increases with increasing temperature difference.  相似文献   

13.
Frequency domain fundamental solutions for a poroelastic half-space   总被引:1,自引:0,他引:1  
In frequency domain, the fundamental solutions for a poroelastic half-space are re-derived in the context of Biot's theory. Based on Biot's theory, the governing field equations for the dynamic poroelasicity are established in terms of solid displacement and pore pressure. A method of potentials in cylindrical coordinate system is proposed to decouple the homogeneous Biot's wave equations into four scalar Helmholtz equations, and the general solutions to these scalar wave equations are obtained. After that, spectral Green's functions for a poroelastic full-space are found through a decomposition of solid displacement, pore pressure, and body force fields. Mirror-image technique is then applied to construct the half-space fundamental solutions.Finally, transient responses of the half-space to buried point forces are examined.  相似文献   

14.
In this work, the stability of a flexible thin cylindrical workpiece in turning is analyzed. A process model is derived based on a finite element representation of the workpiece flexibility and a nonlinear cutting force law. Repeated cutting of the same surface due to overlapping cuts is modeled with the help of a time delay. The stability of the so obtained system of periodic delay differential equations is then determined using an approximation as a time-discrete system and Floquet theory. The time-discrete system is obtained using the semi-discretization method. The method is implemented to analyze the stability of two different workpiece models of different thicknesses for different tool positions with respect to the jaw end. It is shown that the stability chart depends on the tool position as well as on the thickness.  相似文献   

15.
Size effect of lattice material and minimum weight design   总被引:3,自引:0,他引:3  
The size effects of microstructure of lattice materials on structural analysis and minimum weight design are studied with extented multiscale finite element method(EMsFEM) in the paper. With the same volume of base material and configuration, the structural displacement and maximum axial stress of micro-rod of lattice structures with different sizes of microstructure are analyzed and compared.It is pointed out that different from the traditional mathematical homogenization method, EMsFEM is suitable for analyzing the structures which is constituted with lattice materials and composed of quantities of finite-sized micro-rods.The minimum weight design of structures composed of lattice material is studied with downscaling calculation of EMsFEM under stress constraints of micro-rods. The optimal design results show that the weight of the structure increases with the decrease of the size of basic sub-unit cells. The paper presents a new approach for analysis and optimization of lattice materials in complex engineering constructions.  相似文献   

16.
In microcantilever-based label-free biodetection technologies, deflection changes induced by adsorptions of double-stranded DNA (dsDNA) molecules on Au-layer surface are greatly affected by the mechanical, thermal and electrical properties of DNA biofilm. In this paper, the elastic properties of dsDNA biofilm are studied. First, the Parsegian's empirical potential based on a mesoscopic liq- uid crystal theory is employed to describe the interaction energy among coarse-grained DNA cylinders. Then, con- sidering a Gaussian distribution of DNA interaxial distance, the thought experiment method is used to derive an analyti- cal expression for Young's modulus of DNA biofilm with a stochastic packing pattern for the first time. Results show that Young's modulus of DNA biofilm is on the order of 10 MPa. These findings could provide a simple and effective method to evaluate the mechanical properties of soft biofilm on snbstrate.  相似文献   

17.
Viscoelasticity and poroelasticity commonly coexist as time-dependent behaviors in polymer gels. Engineering applications often require knowledge of both behaviors separated; however, few methods exist to decouple viscoelastic and poroelastic properties of gels. We propose a method capable of separating viscoelasticity and poroelasticity of gels in various mechanical tests. The viscoelastic char- acteristic time and the poroelastic diffusivity of a gel define an intrinsic material length scale of the gel. The experimen- tal setup gives a sample length scale, over which the solvent migrates in the gel. By setting the sample length to be much larger or smaller than the material length, the viscoelasticity and poroelasticity of the gel will dominate at different time scales in a test. Therefore, the viscoelastic and poroelastic properties of the gel can be probed separately at different time scales of the test. We further validate the method by finite-element models and stress-relaxation experiments.  相似文献   

18.
Condensation technique of degree of freedom is first proposed to improve the computational efficiency of meshfree method with Galerkin weak form for elastic dy- namic analysis. In the present method, scattered nodes with- out connectivity are divided into several subsets by cells with arbitrary shape. Local discrete equation is established over each cell by using moving Kriging interpolation, in which the nodes that located in the cell are used for approxima- tion. Then local discrete equations can be simplified by con- densation of degree of freedom, which transfers equations of inner nodes to equations of boundary nodes based on cells. The global dynamic system equations are obtained by as- sembling all local discrete equations and are solved by using the standard implicit Newmark's time integration scheme. In the scheme of present method, the calculation of each cell is carried out by meshfree method, and local search is imple- mented in interpolation. Numerical examples show that the present method has high computational efficiency and good accuracy in solving elastic dynamic problems.  相似文献   

19.
A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of controlling the po- sition and attitude of both the satellite base and the payload grasped by the manipulator end effectors. The equations of motion in reduced-order form for the constrained system are derived by incorporating the constraint equations in terms of accelerations into Kane's equations of the unconstrained system. Model analysis shows that the resulting equations perfectly meet the requirement of adaptive controller design. Consequently, by using an indirect approach, an adaptive control scheme is proposed to accomplish position/attitude trajectory tracking control with the uncertain parameters be- ing estimated on-line. The actuator redundancy due to the closed-loop constraints is utilized to minimize a weighted norm of the joint torques. Global asymptotic stability is proven by using Lyapunov's method, and simulation results are also presented to demonstrate the effectiveness of the proposed approach.  相似文献   

20.
It has shown that altering crosslink density of biopolymers will regulate the morphology of Mesenchymal Stem Cells (MSCs) and the subsequent MSCs differentia- tion. These observations have been found in a wide range of biopolymers. However, a recent work published in Nature Materials has revealed that MSCs morphology and differen- tiation was unaffected by crosslink density of polydimethyl- siloxane (PDMS), which remains elusive. To understand such unusual behaviour, we use nanoindentation tests and modelling to characterize viscoelastic properties and sur- face adhesion of PDMS with different base:crosslink ratio varied from 50:1 (50D) to 10:1 (10D). It has shown that lower crosslink density leads to lower elastic moduli. De- spite lower nanoindentation elastic moduli, PDMS with lowest crosslink density has higher local surface adhesion which would affect cell-biomaterials interactions. This work suggests that surface adhesion is likely another important physical cue to regulate cell-biomaterials interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号