首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We introduce a closure concept that turns a claw‐free graph into the line graph of a multigraph while preserving its (non‐)Hamilton‐connectedness. As an application, we show that every 7‐connected claw‐free graph is Hamilton‐connected, and we show that the well‐known conjecture by Matthews and Sumner (every 4‐connected claw‐free graph is hamiltonian) is equivalent with the statement that every 4‐connected claw‐free graph is Hamilton‐connected. Finally, we show a natural way to avoid the non‐uniqueness of a preimage of a line graph of a multigraph, and we prove that the closure operation is, in a sense, best possible. © 2010 Wiley Periodicals, Inc. J Graph Theory 66:152‐173, 2011  相似文献   

2.
It is easy to characterize chordal graphs by every k‐cycle having at least f(k) = k ? 3 chords. I prove new, analogous characterizations of the house‐hole‐domino‐free graphs using f(k) = 2?(k ? 3)/2?, and of the graphs whose blocks are trivially perfect using f(k) = 2k ? 7. These three functions f(k) are optimum in that each class contains graphs in which every k‐cycle has exactly f(k) chords. The functions 3?(k ? 3)/3? and 3k ? 11 also characterize related graph classes, but without being optimum. I consider several other graph classes and their optimum functions, and what happens when k‐cycles are replaced with k‐paths. © 2010 Wiley Periodicals, Inc. J Graph Theory 68:137‐147, 2011  相似文献   

3.
Let G be a graph and let V0 = {ν∈ V(G): dG(ν) = 6}. We show in this paper that: (i) if G is a 6‐connected line graph and if |V0| ≤ 29 or G[V0] contains at most 5 vertex disjoint K4's, then G is Hamilton‐connected; (ii) every 8‐connected claw‐free graph is Hamilton‐connected. Several related results known before are generalized. © 2005 Wiley Periodicals, Inc. J Graph Theory  相似文献   

4.
A graph G is 1‐Hamilton‐connected if is Hamilton‐connected for every vertex . In the article, we introduce a closure concept for 1‐Hamilton‐connectedness in claw‐free graphs. If is a (new) closure of a claw‐free graph G, then is 1‐Hamilton‐connected if and only if G is 1‐Hamilton‐connected, is the line graph of a multigraph, and for some , is the line graph of a multigraph with at most two triangles or at most one double edge. As applications, we prove that Thomassen's Conjecture (every 4‐connected line graph is hamiltonian) is equivalent to the statement that every 4‐connected claw‐free graph is 1‐Hamilton‐connected, and we present results showing that every 5‐connected claw‐free graph with minimum degree at least 6 is 1‐Hamilton‐connected and that every 4‐connected claw‐free and hourglass‐free graph is 1‐Hamilton‐connected.  相似文献   

5.
A graph G is a quasi‐line graph if for every vertex vV(G), the set of neighbors of v in G can be expressed as the union of two cliques. The class of quasi‐line graphs is a proper superset of the class of line graphs. Hadwiger's conjecture states that if a graph G is not t‐colorable then it contains Kt + 1 as a minor. This conjecture has been proved for line graphs by Reed and Seymour. We extend their result to all quasi‐line graphs. © 2008 Wiley Periodicals, Inc. J Graph Theory 59: 17–33, 2008  相似文献   

6.
We consider the existence of several different kinds of factors in 4‐connected claw‐free graphs. This is motivated by the following two conjectures which are in fact equivalent by a recent result of the third author. Conjecture 1 (Thomassen): Every 4‐connected line graph is hamiltonian, i.e., has a connected 2‐factor. Conjecture 2 (Matthews and Sumner): Every 4‐connected claw‐free graph is hamiltonian. We first show that Conjecture 2 is true within the class of hourglass‐free graphs, i.e., graphs that do not contain an induced subgraph isomorphic to two triangles meeting in exactly one vertex. Next we show that a weaker form of Conjecture 2 is true, in which the conclusion is replaced by the conclusion that there exists a connected spanning subgraph in which each vertex has degree two or four. Finally we show that Conjectures 1 and 2 are equivalent to seemingly weaker conjectures in which the conclusion is replaced by the conclusion that there exists a spanning subgraph consisting of a bounded number of paths © 2001 John Wiley & Sons, Inc. J Graph Theory 37: 125–136, 2001  相似文献   

7.
The topological approach to the study of infinite graphs of Diestel and KÜhn has enabled several results on Hamilton cycles in finite graphs to be extended to locally finite graphs. We consider the result that the line graph of a finite 4‐edge‐connected graph is hamiltonian. We prove a weaker version of this result for infinite graphs: The line graph of locally finite, 6‐edge‐connected graph with a finite number of ends, each of which is thin, is hamiltonian.  相似文献   

8.
In this paper, we show that if G is a 3‐edge‐connected graph with and , then either G has an Eulerian subgraph H such that , or G can be contracted to the Petersen graph in such a way that the preimage of each vertex of the Petersen graph contains at least one vertex in S. If G is a 3‐edge‐connected planar graph, then for any , G has an Eulerian subgraph H such that . As an application, we obtain a new result on Hamiltonian line graphs. © 2003 Wiley Periodicals, Inc. J Graph Theory 42: 308–319, 2003  相似文献   

9.
Let n≥2 be an integer. The complete graph Kn with a 1‐factor F removed has a decomposition into Hamilton cycles if and only if n is even. We show that KnF has a decomposition into Hamilton cycles which are symmetric with respect to the 1‐factor F if and only if n≡2, 4 mod 8. We also show that the complete bipartite graph Kn, n has a symmetric Hamilton cycle decomposition if and only if n is even, and that if F is a 1‐factor of Kn, n, then Kn, nF has a symmetric Hamilton cycle decomposition if and only if n is odd. © 2010 Wiley Periodicals, Inc. J Combin Designs 19:1‐15, 2010  相似文献   

10.
In this article, we apply a cutting theorem of Thomassen to show that there is a function f: N → N such that if G is a 3‐connected graph on n vertices which can be embedded in the orientable surface of genus g with face‐width at least f(g), then G contains a cycle of length at least cn, where c is a constant not dependent on g. © 2002 Wiley Periodicals, Inc. J Graph Theory 41: 69–84, 2002  相似文献   

11.
Given two 2‐regular graphs F1 and F2, both of order n, the Hamilton‐Waterloo Problem for F1 and F2 asks for a factorization of the complete graph into α1 copies of F1, α2 copies of F2, and a 1‐factor if n is even, for all nonnegative integers α1 and α2 satisfying . We settle the Hamilton‐Waterloo Problem for all bipartite 2‐regular graphs F1 and F2 where F1 can be obtained from F2 by replacing each cycle with a bipartite 2‐regular graph of the same order.  相似文献   

12.
13.
The Hamilton–Waterloo problem asks for a 2‐factorization of (for v odd) or minus a 1‐factor (for v even) into ‐factors and ‐factors. We completely solve the Hamilton–Waterloo problem in the case of C3‐factors and ‐factors for .  相似文献   

14.
By Petersen's theorem, a bridgeless cubic graph has a 2‐factor. H. Fleischner extended this result to bridgeless graphs of minimum degree at least three by showing that every such graph has a spanning even subgraph. Our main result is that, under the stronger hypothesis of 3‐edge‐connectivity, we can find a spanning even subgraph in which every component has at least five vertices. We show that this is in some sense best possible by constructing an infinite family of 3‐edge‐connected graphs in which every spanning even subgraph has a 5‐cycle as a component. © 2009 Wiley Periodicals, Inc. J Graph Theory 62: 37–47, 2009  相似文献   

15.
We show that if G is a 4‐connected claw‐free graph in which every induced hourglass subgraph S contains two non‐adjacent vertices with a common neighbor outside S, then G is hamiltonian. This extends the fact that 4‐connected claw‐free, hourglass‐free graphs are hamiltonian, thus proving a broader special case of a conjecture by Matthews and Sumner. © 2005 Wiley Periodicals, Inc. J Graph Theory 48: 267–276, 2005  相似文献   

16.
Hadwiger's conjecture states that every graph with chromatic number χ has a clique minor of size χ. In this paper we prove a weakened version of this conjecture for the class of claw‐free graphs (graphs that do not have a vertex with three pairwise nonadjacent neighbors). Our main result is that a claw‐free graph with chromatic number χ has a clique minor of size $\lceil\frac{2}{3}\chi\rceil$. © 2009 Wiley Periodicals, Inc. J Graph Theory 63: 259–278, 2010  相似文献   

17.
An mcovering of a graph G is a spanning subgraph of G with maximum degree at most m. In this paper, we shall show that every 3‐connected graph on a surface with Euler genus k ≥ 2 with sufficiently large representativity has a 2‐connected 7‐covering with at most 6k ? 12 vertices of degree 7. We also construct, for every surface F2 with Euler genus k ≥ 2, a 3‐connected graph G on F2 with arbitrarily large representativity each of whose 2‐connected 7‐coverings contains at least 6k ? 12 vertices of degree 7. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 26–36, 2003  相似文献   

18.
Let cl(G) denote Ryjá?ek's closure of a claw‐free graph G. In this article, we prove the following result. Let G be a 4‐connected claw‐free graph. Assume that G[NG(T)] is cyclically 3‐connected if T is a maximal K3 in G which is also maximal in cl(G). Then G is hamiltonian. This result is a common generalization of Kaiser et al.'s theorem [J Graph Theory 48(4) (2005), 267–276] and Pfender's theorem [J Graph Theory 49(4) (2005), 262–272]. © 2011 Wiley Periodicals, Inc. J Graph Theory  相似文献   

19.
Let C 4 be a cycle of order 4. Write e x ( n , n , n , C 4 ) for the maximum number of edges in a balanced 3‐partite graph whose vertex set consists of three parts, each has n vertices that have no subgraph isomorphic to C 4 . In this paper, we show that e x ( n , n , n , C 4 ) 3 2 n ( p + 1 ) , where n = p ( p ? 1 ) 2 and p is a prime number. Note that e x ( n , n , n , C 4 ) ( 3 2 2 + o ( 1 ) ) n 3 2 from Tait and Timmons's works. Since for every integer m , one can find a prime p such that m p ( 1 + o ( 1 ) ) m , we obtain that lim n e x ( n , n , n , C 4 ) 3 2 2 n 3 2 = 1 .  相似文献   

20.
We prove that all connected vertex‐transitive graphs of order p2, p a prime, can be decomposed into Hamilton cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号