首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Let G be a graph and let V0 = {ν∈ V(G): dG(ν) = 6}. We show in this paper that: (i) if G is a 6‐connected line graph and if |V0| ≤ 29 or G[V0] contains at most 5 vertex disjoint K4's, then G is Hamilton‐connected; (ii) every 8‐connected claw‐free graph is Hamilton‐connected. Several related results known before are generalized. © 2005 Wiley Periodicals, Inc. J Graph Theory  相似文献   

2.
Letk2 be an integer and let G be a graph of ordern with minimum degree at leastk, n8k -16 for evenn and n⩾6k - 13 for oddn. If the degree sum of each pair of nonadjacent vertices of G is at least n, then for any given Hamiltonian cycleC. G has a [k, k + 1]-factor containingC Preject supported partially by an exchange program between the Chinese Academy of Sciences and the Japan Society for Promotion of Sciences and by the National Natural Science Foundation of China (Grant No. 19136012)  相似文献   

3.
We consider the existence of several different kinds of factors in 4‐connected claw‐free graphs. This is motivated by the following two conjectures which are in fact equivalent by a recent result of the third author. Conjecture 1 (Thomassen): Every 4‐connected line graph is hamiltonian, i.e., has a connected 2‐factor. Conjecture 2 (Matthews and Sumner): Every 4‐connected claw‐free graph is hamiltonian. We first show that Conjecture 2 is true within the class of hourglass‐free graphs, i.e., graphs that do not contain an induced subgraph isomorphic to two triangles meeting in exactly one vertex. Next we show that a weaker form of Conjecture 2 is true, in which the conclusion is replaced by the conclusion that there exists a connected spanning subgraph in which each vertex has degree two or four. Finally we show that Conjectures 1 and 2 are equivalent to seemingly weaker conjectures in which the conclusion is replaced by the conclusion that there exists a spanning subgraph consisting of a bounded number of paths © 2001 John Wiley & Sons, Inc. J Graph Theory 37: 125–136, 2001  相似文献   

4.
    
We introduce a closure concept that turns a claw‐free graph into the line graph of a multigraph while preserving its (non‐)Hamilton‐connectedness. As an application, we show that every 7‐connected claw‐free graph is Hamilton‐connected, and we show that the well‐known conjecture by Matthews and Sumner (every 4‐connected claw‐free graph is hamiltonian) is equivalent with the statement that every 4‐connected claw‐free graph is Hamilton‐connected. Finally, we show a natural way to avoid the non‐uniqueness of a preimage of a line graph of a multigraph, and we prove that the closure operation is, in a sense, best possible. © 2010 Wiley Periodicals, Inc. J Graph Theory 66:152‐173, 2011  相似文献   

5.
设G是一个无向简单图,A(G)为G的邻接矩阵.用G的补图的特征值给出G包含哈密尔顿路、哈密尔顿圈以及哈密尔顿连通图的充分条件:其次用二部图的拟补图的特征值给出二部图包含哈密尔顿圈的充分条件.这些结果改进了一些已知的结果.  相似文献   

6.
    
A graph G is 1‐Hamilton‐connected if is Hamilton‐connected for every vertex . In the article, we introduce a closure concept for 1‐Hamilton‐connectedness in claw‐free graphs. If is a (new) closure of a claw‐free graph G, then is 1‐Hamilton‐connected if and only if G is 1‐Hamilton‐connected, is the line graph of a multigraph, and for some , is the line graph of a multigraph with at most two triangles or at most one double edge. As applications, we prove that Thomassen's Conjecture (every 4‐connected line graph is hamiltonian) is equivalent to the statement that every 4‐connected claw‐free graph is 1‐Hamilton‐connected, and we present results showing that every 5‐connected claw‐free graph with minimum degree at least 6 is 1‐Hamilton‐connected and that every 4‐connected claw‐free and hourglass‐free graph is 1‐Hamilton‐connected.  相似文献   

7.
    
We construct an incidence structure using certain points and lines in finite projective spaces. The structural properties of the associated bipartite incidence graphs are analyzed. These n × n bipartite graphs provide constructions of C6‐free graphs with Ω(n4/3 edges, C10‐free graphs with Ω(n6/5) edges, and Θ(7,7,7)‐free graphs with Ω(n8/7) edges. Each of these bounds is sharp in order of magnitude. © 2005 Wiley Periodicals, Inc. J Graph Theory 49: 1–10, 2005  相似文献   

8.
    
We prove that every graph G for which has an independent set I such that ω(G?I)<ω(G). It follows that a minimum counterexample G to Reed's conjecture satisfies and hence also . This also applies to restrictions of Reed's conjecture to hereditary graph classes, and in particular generalizes and simplifies King, Reed and Vetta's proof of Reed's conjecture for line graphs. © 2010 Wiley Periodicals, Inc. J Graph Theory 66: 32–37, 2010  相似文献   

9.
    
It is easy to characterize chordal graphs by every k‐cycle having at least f(k) = k ? 3 chords. I prove new, analogous characterizations of the house‐hole‐domino‐free graphs using f(k) = 2?(k ? 3)/2?, and of the graphs whose blocks are trivially perfect using f(k) = 2k ? 7. These three functions f(k) are optimum in that each class contains graphs in which every k‐cycle has exactly f(k) chords. The functions 3?(k ? 3)/3? and 3k ? 11 also characterize related graph classes, but without being optimum. I consider several other graph classes and their optimum functions, and what happens when k‐cycles are replaced with k‐paths. © 2010 Wiley Periodicals, Inc. J Graph Theory 68:137‐147, 2011  相似文献   

10.
    
《Discrete Mathematics》2022,345(1):112624
  相似文献   

11.
    
The second author's (B.A.R.) ω, Δ, χ conjecture proposes that every graph satisfies . In this article, we prove that the conjecture holds for all claw‐free graphs. Our approach uses the structure theorem of Chudnovsky and Seymour. Along the way, we discuss a stronger local conjecture, and prove that it holds for claw‐free graphs with a three‐colorable complement. To prove our results, we introduce a very useful χ‐preserving reduction on homogeneous pairs of cliques, and thus restrict our view to so‐called skeletal graphs.  相似文献   

12.
Thomassen [Reflections on graph theory, J. Graph Theory 10 (1986) 309-324] conjectured that every 4-connected line graph is hamiltonian. An hourglass is a graph isomorphic to K5-E(C4), where C4 is a cycle of length 4 in K5. In Broersma et al. [On factors of 4-connected claw-free graphs, J. Graph Theory 37 (2001) 125-136], it is shown that every 4-connected line graph without an induced subgraph isomorphic to the hourglass is hamiltonian connected. In this note, we prove that every 3-connected, essentially 4-connected hourglass free line graph, is hamiltonian connected.  相似文献   

13.
    
Hadwiger's conjecture asserts that every graph with chromatic number t contains a complete minor of order t. Given integers , the Kneser graph is the graph with vertices the k‐subsets of an n‐set such that two vertices are adjacent if and only if the corresponding k‐subsets are disjoint. We prove that Hadwiger's conjecture is true for the complements of Kneser graphs.  相似文献   

14.
    
Let n≥2 be an integer. The complete graph Kn with a 1‐factor F removed has a decomposition into Hamilton cycles if and only if n is even. We show that KnF has a decomposition into Hamilton cycles which are symmetric with respect to the 1‐factor F if and only if n≡2, 4 mod 8. We also show that the complete bipartite graph Kn, n has a symmetric Hamilton cycle decomposition if and only if n is even, and that if F is a 1‐factor of Kn, n, then Kn, nF has a symmetric Hamilton cycle decomposition if and only if n is odd. © 2010 Wiley Periodicals, Inc. J Combin Designs 19:1‐15, 2010  相似文献   

15.
    
In this article, we apply a cutting theorem of Thomassen to show that there is a function f: N → N such that if G is a 3‐connected graph on n vertices which can be embedded in the orientable surface of genus g with face‐width at least f(g), then G contains a cycle of length at least cn, where c is a constant not dependent on g. © 2002 Wiley Periodicals, Inc. J Graph Theory 41: 69–84, 2002  相似文献   

16.
17.
    
In this article, we verify Dade's projective invariant conjecture for the symplectic group Sp4(2 n ) and the special unitary group SU4(22n ) in the defining characteristic, that is, in characteristic 2. Furthermore, we show that the Isaacs–Malle–Navarro version of the McKay conjecture holds for Sp4(2 n ) and SU4(22n ) in the defining characteristic, that is, Sp4(2 n ) and SU4(22n ) are good for the prime 2 in the sense of Isaacs, Malle, and Navarro.  相似文献   

18.
The concept of signed domination number of an undirected graph (introduced by J. E. Dunbar, S. T. Hedetniemi, M. A. Henning and P. J. Slater) is transferred to directed graphs. Exact values are found for particular types of tournaments. It is proved that for digraphs with a directed Hamiltonian cycle the signed domination number may be arbitrarily small.  相似文献   

19.
    
  相似文献   

20.
    
The square G2 of a graph G is the graph with the same vertex set G and with two vertices adjacent if their distance in G is at most 2. Thomassen showed that every planar graph G with maximum degree Δ(G) = 3 satisfies χ(G2) ≤ 7. Kostochka and Woodall conjectured that for every graph, the list‐chromatic number of G2 equals the chromatic number of G2, that is, χl(G2) = χ(G2) for all G. If true, this conjecture (together with Thomassen's result) implies that every planar graph G with Δ(G) = 3 satisfies χl(G2) ≤ 7. We prove that every connected graph (not necessarily planar) with Δ(G) = 3 other than the Petersen graph satisfies χl(G2) ≤8 (and this is best possible). In addition, we show that if G is a planar graph with Δ(G) = 3 and girth g(G) ≥ 7, then χl(G2) ≤ 7. Dvo?ák, ?krekovski, and Tancer showed that if G is a planar graph with Δ(G) = 3 and girth g(G) ≥ 10, then χl(G2) ≤6. We improve the girth bound to show that if G is a planar graph with Δ(G) = 3 and g(G) ≥ 9, then χl(G2) ≤ 6. All of our proofs can be easily translated into linear‐time coloring algorithms. © 2007 Wiley Periodicals, Inc. J Graph Theory 57: 65–87, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号