首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
有机-无机复合质子交换膜的制备与界面特性   总被引:3,自引:0,他引:3  
有机-无机复合质子交换膜的开发是燃料电池用质子交换膜的一个重要研究方向,本文综述了有机-无机复合质子交换膜的制备方法,分析了两相之间的界面特性,并对这种复合膜的研究前景进行了展望.  相似文献   

2.
为提高磺化聚酰亚胺质子交换膜(SPI PEM)的高温耐水解稳定性及电池性能,用3,5-双(4-氨基苯氧基)苯甲酸(BAPBa)制备了一系列六元环型SPI PEM,利用甲磺酸/五氧化二磷溶液(PPMA)制备了羰基和砜基共交联的SPI PEM.测定了SPI PEM的质子传导率、耐水解稳定性、机械性能及电池性能.结果表明,羰基和砜基共交联提高膜交联度的同时减少了磺酸基的消耗,使SPI PEM保持较高的质子传导率.在相对湿度为50%RH时,羰基和砜基共交联SPI PEM的质子传导率为7.8 m S/cm,比同样条件下砜基交联的SPI PEM提高28%.羰基和砜基共交联的SPI PEM在130℃水中老化500 h后断裂伸长率为18%,质子传导率未明显降低.羰基和砜基共交联SPI PEM作为电池时,最大功率密度达到0.85 W/cm2,是砜基交联PEM的1.3倍.  相似文献   

3.
曹桐  彭军  冯炎  刘孝波  黄宇敏 《应用化学》2022,39(12):1783-1802
燃料电池是以氢气、甲醇等作为燃料的一种新型能量转化装置,其中质子交换膜燃料电池(Proton Exchange Membrane Fuel Cell, PEMFC)凭借其能量功率高、启动速度快和使用寿命长等优点已经在移动电源、潜艇和电动汽车等领域得到了广泛应用。质子交换膜(Proton Exchange Membrane, PEM)对PEMFC的性能影响最大,高效的PEMFC需要PEM具有高的质子电导率、良好的热稳定性和机械性能、低燃料渗透率以及优异的物理化学稳定性等。目前市面上多数使用的均是具有优异质子电导率的Nafion系列膜,但其存在制备困难、成本昂贵、质子电导率严重依赖湿度等缺点,在一定程度上限制了其发展。为了让PEM有更多的选择,科学家一直专注于使用新材料替代Nafion膜。近年来,科学家们模拟Nafion结构,通过合成各种侧链含磺酸基团的聚芳醚结构,使得亲水基团磺酸基和疏水基团之间形成微相分离结构,从而获得了一系列具有优异综合性能的PEM。本文将重点对侧链烷基磺化型、侧链磺化嵌段型、侧链局部密集磺化型、侧链磺化交联型和侧链磺化复合型这几种常见策略的合成方法及性能进行了综述,最后展望了侧链磺化聚芳醚在PEM领域的优势及发展前景。  相似文献   

4.
作者结合自己的研究工作,综述了磺化聚芳醚、聚酰亚胺、聚吡咙、聚苯等非氟芳香聚合物质子传输膜材料的国内外研究发展现状,系统介绍和讨论了上述材料设计、制备,膜微观形态,以及结构与性质的关系,指出了制约这类材料性能和发展的因素,并对未来的研究和发展提出了新的设想.  相似文献   

5.
设计、合成了一种含氰基双氯单体,其结构特点是氰基分布在3个以间位醚键相连的苯环上。以此单体和2,5-二氯-3'-磺酸钠二苯甲酮为原料,利用Ni(0)催化偶联反应制备了微嵌段型质子交换膜材料(中等长度磺化聚苯-三氰基聚苯醚酮共聚物(m-SPP-co-PAEK 3CN x),x代表聚合物的离子交换容量)。结果表明,与相同离子交换容量的磺化聚合物相比,该类聚合物膜表现出较低的吸水、溶胀率和较低的甲醇渗透性能。以离子交换容量2.16为例,80℃下,m-SPP-co-PAEK 3CN 2.16的吸水率、溶胀率分别为29.7%、28.2%,而SPP-co-PAEK MO 2.33的吸水率、溶胀率分别为80.2%、37.2%。25℃下,二者的甲醇渗透系数分别为2.38和7.20。聚合物骨架结构中存在丰富的氰基基团,导致膜具有良好的尺寸稳定性和较低的甲醇渗透性能。基于这些优异的性能,新制备的膜材料在燃料电池领域显示了潜在的应用前景。  相似文献   

6.
在含氟聚芳醚侧链引入磺化萘酚基团,制备了一类侧链磺化型含氟聚芳醚(s SPFAE),采用溶液浇铸法制膜并对膜进行了表征和分析.制备的膜材料离子交换容量达到1.42~2.03 mmol/g,均透明柔韧,杨氏模量高于1.0 GPa,拉伸应变达到66%~105%.吸水性及膨胀性测试结果表明该系列膜具有较低的吸水率和良好的尺寸稳定性,在测试温度范围内(30~90℃)吸水率为21%~51%,尺寸变化率低于7%.s SPFAE膜具有良好的热稳定性及氧化稳定性,TGA测试中320~360℃时的重量损失低于5%,在Fenton溶液中80℃处理1 h后的失重率小于2%.同时,该系列膜表现出较高的电导率水平,如SPFAE-0.8膜(IEC=2.03 mmol/g)在80℃时电导率达到217 m S/cm.  相似文献   

7.
A novel sulfonated diamine, 4,4′‐bis(4‐amino‐3‐trifluoromethylphenoxy) biphenyl 3,3′‐disulfonic acid (F‐BAPBDS), was successfully synthesized by nucleophilic aromatic substitution of 4,4′‐dihydroxybiphenyl with 2‐chloro‐5‐nitrobenzotrifluoride, followed by reduction and sulfonation. A series of sulfonated polyimides of high molecular weight (SPI‐x, x represents the molar percentage of the sulfonated monomer) were prepared by copolymerization of 1,4,5,8‐naphathlenetetracarboxylic dianhydride (NTDA) with F‐BAPBDS and nonsulfonated diamine. Flexible and tough membranes of high mechanical strength were obtained by solution casting and the electrolyte properties of the polymers were intensively investigated. The copolymer membranes exhibited excellent oxidative stability due to the introducing of the CF3 groups. The SPI membranes displayed desirable proton conductivity (0.52×10−1–0.97×10−1 S·cm−1) and low methanol permeability (less than 2.8×10−7 cm2·s−1). The highest proton conductivity (1.89×10−1 S·cm−1) was obtained for the SPI‐90 membrane at 80°C, with an IEC of 2.12 mequiv/g. This value is higher than that of Nafion 117 (1.7×10−1 S·cm−1). Furthermore, the hydrolytic stability of the obtained SPIs is better than the BDSA and ODADS based SPIs due to the hydrophobic CF3 groups which protect the imide ring from being attacked by water molecules, in spite of its strong electron‐withdrawing behaviors.  相似文献   

8.
新型萘酐型磺化聚酰亚胺质子交换膜的合成   总被引:2,自引:0,他引:2  
以新型磺化二胺单体, 1,4-双(4-胺基-2-磺酸基苯氧基)苯(DS-TBDA)与非磺化单体1,4′-二胺基二苯醚(ODA)、 1,4,5,8-萘四酸二酐(NTDA)为原料, 采用高温聚合法, 制备了一系列具有不同磺化度的萘酐型磺化聚酰亚胺(S-PI)质子交换膜材料, 并研究了材料性能与结构的关系. 磺化度超过33%时, 质子传导率可达到与Nafion膜同一数量级的水平, 而甲醇透过率均在2.85×10-7 cm2/s以下, 比Nafion膜低1-2个数量级. 研究结果表明, 该膜有望在直接甲醇燃料电池(DMFC)中获得应用.  相似文献   

9.
本文以一种具有含萘结构的磺酸化聚芳醚酮作为主体材料, 采用具有相似化学结构的含萘、 醚和酮结构的聚甲亚胺作为增强组分, 通过溶胶-凝胶的方法在复合膜中引入提高质子传输能力的酸功能化聚倍半硅氧烷(POSS-SO3H), 制备新型的三元复合型质子交换膜, 并对其微结构和性能进行了研究.  相似文献   

10.
以2,2′-双(4-磺基苯氧基)联苯二胺、 2-(4-氨基苯基)-5-氨基苯并咪唑和1,4,5,8-萘四甲酸二酐为单体, 通过逐步聚合和溶液成膜法制备了离子型交联磺化聚酰亚胺质子交换膜(SPI PEMs). SPI PEMs具有优异的机械性能和耐水解稳定性, 在高离子交换容量和高湿度下具有和NR212相当的质子传导性能. 电池工作温度为90 ℃时, 高加湿条件下, n(BSPOB)/n(DABI)为5/2的离子型交联SPI PEM(M1)的最大输出功率密度(Wmax)为 0.93 W/cm2, 高于NR212的0.86 W/cm2. 当电池温度提高到110 ℃时, 所有PEMs的电池性能显著下降, M1的Wmax为0.54 W/cm2, 明显高于共价型交联的SPI PEM. 离子型交联的SPI PEM在110 ℃下300 h的开路电压(OCV)耐久性降低了约10%, 远高于NR212.  相似文献   

11.
磷钨酸/磺化聚醚醚酮质子导电复合膜   总被引:14,自引:0,他引:14  
直接甲醇燃料电池(Direct methanol fuelcell,DMFC)作为各种用途的可移动动力源具有高效、清洁和燃料储运方便等优点,成为20世纪90年代以来研究与开发的热点。目前,这种电池的研究难点主要集中在催化剂不稳定和质子交换膜透醇上,DMFC膜不但要可传递质子和绝缘电子,还应具有  相似文献   

12.
研究了羰基和砜基共交联聚酰亚胺膜M1C和M2C的膜溶胀和质子传导的各向异性,以及在高温和低湿度条件下燃料电池的发电和耐久性能.研究结果表明,M1C和M2C膜厚方向溶胀比砜基交联质子交换膜(R1C)的小,且无显著的膜面方向尺寸变化.M1C和M2C的膜厚方向质子传导率明显大于R1C.温度、压力和相对湿度在很大程度上影响了燃料电池的性能.在相同条件下,M1C的燃料电池发电性能优于R1C.90℃时,较高的相对湿度(RH)82%下,M1C和R1C具有与Nafion相近的发电性能;随着相对湿度降低到27%,M1C的电池性能显著降低,但仍高于R1C.随着操作温度从90℃提高到110℃,所有质子交换膜的性能都大幅下降.在0.2 MPa及RH为49%时,M1C的最大输出功率比R1C高21%.当电池压力上升至0.3 MPa后,M1C的最大输出功率从0.2 MPa时的0.17 W/cm~2提高到0.38 W/cm~2.M1C在110℃下连续运行330 h后性能未见明显下降,说明羰基和砜基共交联的磺化聚酰亚胺质子交换膜具有良好的高温燃料电池耐久性能.  相似文献   

13.
合成了4,4’-二(间氨基苯氧基)联苯-3,3’-二磺酸(mBAPBDS)单体, 采用红外光谱和核磁共振等方法对其结构进行了表征. 使用mBAPBDS, 2-(对胺基苯基)苯并噁唑-5-胺(APBA)和1,4,5,8-萘四甲酸二酐(NTDA)共聚合成了含有噁唑结构的新型磺化聚酰亚胺(NTDA-mBAPBDS/APBA), 通过控制磺化二胺与非磺化二胺的比例来控制磺化程度. NTDA-mBAPBDS/APBA共聚物表现出较好的溶解性、成膜性能和良好的热稳定性, 其磺酸基团分解温度高于300 ℃. 采用溶液浇铸法制备了磺化聚酰亚胺(SPIs)膜, 对膜的吸水率、溶胀度和质子电导率等性能进行了初步的研究. 结果表明, SPIs膜具有适当的吸水率和良好的尺寸稳定性, 其室温电导率在4.72×10-3和9.60×10-3 S/cm之间, 接近于相同条件下Nafion®117的电导率(9.80×10-3 S/cm).  相似文献   

14.
制备了基于磷钨酸(PWA)与磺化杂萘联苯聚醚酮(SPPEK)的无机-有机复合质子交换膜, 红外光谱测试结果表明, 复合膜中PWA通过端氧和桥氧共同与SPPEK发生作用; 由SEM照片看出, 对磺化度为58%的SPPEK, PWA掺杂量为20%和40%时杂多酸的分散良好, 掺杂量为60%时膜内出现颗粒聚集; PWA在水中的溶出性测试发现, 用水处理4天, 各复合膜中PWA的溶出率均低于10%; PWA/SPPEK膜具有良好的质子导电性, PWA掺杂量高于40%、磺化度为58%的SPPEK为基质的复合膜在100 ℃以上的电导率接近甚至超过Nafion115膜的电导率, 复合膜的电导率和水含量均随PWA掺杂量的增加而增加; 随着PWA掺杂量的增加复合膜的阻醇性能下降, 但除PWA掺杂量60%、SPPEK磺化度58%的复合膜外, 所制备的多种复合膜的甲醇透过系数均低于Nafion115膜.  相似文献   

15.
提出了一种利用杂化纳米纤维来制备高性能质子交换膜的方法,首先采用溶液喷射纺丝技术纺制了SPES/Si O2杂化纳米纤维,再通过溶液浸渍法制备了SPES/Si O2/Nafion复合质子交换膜,并研究了其热稳定性、吸水性能、溶胀性能、质子传导性能以及甲醇渗透性能等.结果表明,杂化纳米纤维的引入明显改善了Nafion膜的热性能、尺寸稳定性,并大大提高了其质子传导性能.TG数据表明复合膜的热稳定性相比于Nafion膜得到了极大改善.复合膜溶胀率均比Nafion膜的小,SPES/Si O2/Nafion-5,SPES/Si O2/Nafion-15和SPES/Si O2/Nafion-25在80℃溶胀率仅为14.9%,15.84%和17.2%,但是复合膜的溶胀率随着Si O2含量的增加而增大.复合膜电导率随Si O2含量的增加呈先增大后减小的规律,Si O2含量为15%的复合膜在80℃、100%湿度条件下,质子导电率可达到0.154 S/cm.其阻醇性能也得到了极大改善,Si O2含量为25%的复合膜相比于Nafion膜其甲醇渗透率降低了55.3%.因此SPES/Si O2杂化纳米纤维复合质子交换膜可以作为一种新型质子交换膜应用于燃料电池中.  相似文献   

16.
采用sol-gel法成功制备了一系列有望用于高温质子交换膜燃料电池的新型磺化聚醚砜(SPES)/磷酸硼(BPO4)复合膜, 并经热重分析(TGA)-傅立叶变换红外光谱(FTIR)联用技术、差示扫描量热仪(DSC)、扫描电子显微镜(SEM)等对膜的结构和性能进行了表征. 结果表明, 复合膜较纯SPES膜具有更高的热稳定性和玻璃化转变温度, 较低的溶胀性及较高的氧化稳定性; SEM图片显示BPO4在聚合物基体中的分布十分均匀, 这将有利于连续质子传输通道的形成; 复合膜的质子传导率随BPO4含量的增加而增加, 当温度超过120 ℃后, 复合膜仍保持着较高的质子传导率, 这表明该复合膜在高温质子交换膜燃料电池中具有良好的应用前景.  相似文献   

17.
质子交换膜燃料电池电极的一种新的制备方法   总被引:19,自引:0,他引:19  
提出一种新的电极制备方法 ,在薄层催化层电极制备中加入造孔剂 ,并使用喷涂方法 ,使质子交换膜燃料电池 (PEMFC)电极中铂担量降到 0 .0 2mgPt/cm2 .与文献方法相比 ,新方法过程简单、成本低、易放大 .并通过实验得到电极的最佳组成为 :催化剂 :造孔剂 :Nafion =3:3:1 .采用此方法制备的电极 (0 .0 2mgPt/cm2 )与Nafion 1 1 5膜组装成电池 ,单池工作电压为 0 .7V时 ,每毫克铂可产生 2 0A的电流 ,每千瓦电池组仅需 72mgPt .  相似文献   

18.
刘璐  陈康成 《高分子学报》2020,(4):393-402,I0004
以不同摩尔比的4,4′-双(4-(2-苯基乙二酮基)苯氧基联苯、4,4′-双(2-苯基乙二酮基)二苯醚与3,3′,4,4′-四氨基联苯共聚制备聚喹喔啉,经后磺化法得到一系列磺化度可控的磺化聚苯基喹喔啉(SPPQ).模型化合物确认,磺酸基团精确接入电子云密度较高的含醚键的联苯片段的2,2′-位上,证明通过单体分子结构设计与后磺化法结合,可使磺酸基团在温和条件下,按预想接入到聚合物主链上,达到磺化度和磺化位置精确可控的目的. SPPQ的相对黏度均在3.8 dL/g以上.通过溶液涂膜法制备的主链型磺化聚苯基喹喔啉质子交换膜(SPPQ PEM)的吸水率都低于39%,尺寸变化率为2.1%~13%,且随着IEC和温度的提高而线性增加.如,80℃下,IEC高达2.21 meq/g的SPPQ-5的膜面和膜厚方向的尺寸变化率仅为11%和13%,具有良好的形状维持能力.热重分析表明,SPPQ PEM在320℃左右脱去磺酸基团,550℃左右发生聚合物主链降解,具有良好的热稳定性. Fenton试剂测试表明,SPPQ PEM开始破碎的时间随IEC的增加而缩短,在20℃时,IEC较低的SPPQ-1 (1.29 meq/g)破碎时间可达151 h,而IEC较高的SPPQ-5(2.21 meq/g)破碎时间缩短至81 h. PEM的质子传导率随温度和IEC的增加而显著提高,最高可达64 mS/cm,由于磺酸基团和喹喔啉酸碱对的形成以及吸水率偏低的原因,这一数值远低于Nafion.  相似文献   

19.
通过在磺化聚酰亚胺(SPI)中加入具有高温保水功能的无机纳米粒子磺化多孔沸石(S-BEA)制备SPI/S-BEA复合质子交换膜(PEM).扫描电镜显示当S-BEA含量为10%时(H1),无机颗粒较为均一的分散在SPI PEM中,当S-BEA的含量提高到20%时(H2),无机颗粒团聚增多,可明显观察到有机/无机宏观相分离界面.SPI/S-BEA复合PEM H1的离子交换容量(IEC)较SPI PEM M1下降了12%,由于S-BEA粒子的存在,吸水率并未有下降,膜中单位磺酸基团的水分子摩尔数从原来的23提高到10%杂化量时的26.由于无机颗粒表面的羟基和高分子链的氢键作用,复合PEM在干燥和润湿环境下的尺寸变化并无明显增加,且保持良好的机械性能.适量加入S-BEA的复合PEM的IEC值虽然有所下降,但低湿度下的质子传导率并未明显降低.当S-BEA含量达到20%时,其明显的宏观相分离界面不利于质子在膜内的有效传导,质子传导率有所下降.燃料电池性能测试表明,在90℃下,SPI/S-BEA复合PEM H1与SPI PEM M1相比较并未有明显的提高.当电池温度提高到110 ℃后,由于无机粒子S-BEA的高温保水性能,复合PEM的电池性能要明显好于SPI PEM,如H1电池最大输出功率为0.61 W cm-2,相对M1提高了30%.  相似文献   

20.
本文先通过缩合反应合成羟端基的二酰亚胺单体, 然后利用亲核缩聚反应, 与4,4′-二氯二苯砜及3,3′-二磺酸钠基-4,4′-二氯二苯砜共聚, 制备聚合物. 该合成路线反应周期短, 对温度和溶剂等条件要求不高, 简便易得.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号