首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
This article summarizes recent efforts for synthesis and reaction chemistry with (imido)vanadium(V)‐alkyl, ‐alkylidene complexes. These (arylimido)vanadium(V) dichloride complexes especially containing aryloxo ligands exhibited notable activities for ethylene polymerization affording ultra high molecular weight polymers with unimodal molecular weight distribution, and the reacition pathways for the polymerization/dimerization using (imido)vanadium(V) dichloride complexes containing (2‐anilido‐methyl)pyridine ligands can be tuned by modification of the steric bulk in the imido substituents; the adamantylimido analogues exhibited exceptionally high both activity and selectivity in the dimerization. This article entitled “(Imido)Vanadium(V)‐Alkyl, Alkylidene Complexes Exhibiting Unique Reactivities towards Olefins, Phenols, and Benzene via 1,2‐C‐H Bond Activation” was contributed by Prof. Kotohiro Nomura who was invited as a Visiting Lecturer (Mar. 6, 2011 ~Mar. 12, 2011) of the Chemistry Research Promotion Center, Taiwan, R.O.C. For full text, please see pp 139~148 in this issue.  相似文献   

2.
A series of novel vanadium(III) complexes bearing tridentate phenoxy‐phosphine [O,P,O] ligands and phosphine oxide‐bridged bisphenolato [O,P?O,O] ligands, which differ in the steric and electronic properties, have been synthesized and characterized. These complexes were characterized by Fourier transform infrared spectroscopy (FTIR) and mass spectra as well as elemental analysis. Single‐crystal X‐ray diffraction revealed that complexes 3c and 4e adopt an octahedral geometry around the vanadium center. In the presence of Et2AlCl as a cocatalyst, these complexes displayed high catalytic activities up to 22.8 kg PE/mmolV.h.bar for ethylene polymerization, and produced high‐molecular‐weight polymers. Introducing additional oxygen atom on phosphorus atom of [O,P,O] ligands has resulted in significant changes on the aspect of steric/electronic effect, which has an impact on polymerization performance. 3c and 4c /Et2AlCl catalytic systems were tolerant to elevated temperature (70 °C) and yielded unimodal polyethylenes, indicating the single‐site behavior of these catalysts. By pretreating with equimolar amounts of alkylaluminums, functional α‐olefin 10‐undecen‐1‐ol can be efficiently incorporated into polyethylene chains. 10‐Undecen‐1‐ol incorporation can easily reach 14.6 mol % under the mild conditions. Other reaction parameters that influenced the polymerization behavior, such as reaction temperature, Al/V (molar ratio), and comonomer concentration, are also examined in detail. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

3.
(Arylimido)vanadium(V) complexes containing anionic ancillary donor ligands of type, V(NAr)Cl2(L) (Ar = 2,6-Me2C6H3, L = aryloxo, ketimide phenoxyimine, etc.) exhibited high catalytic activities for ethylene polymerization in the presence of Al cocatalyst; V(NAr)Cl2(O-2,6-Me2C6H3) showed the exceptionally high activities in the presence of halogenated Al alkyls such as Et2AlCl, EtAlCl2, etc. (Arylimido)vanadium(V)-alkylidene complexes, V(CHSiMe3)(NAr)(L′) (L′ = N=C t Bu2, O-2,6- i Pr2C6H3) exhibited the remarkable catalytic activities for ring-opening metathesis polymerization of norbornene. (Imido)vanadium(V) complexes containing the (2-anilidomethyl)pyridine ligand, V(NR)Cl2[2-Ar′NCH2(C5H4N)] (R = 1-adamantyl, cyclohexyl, phenyl, Ar′ = 2,6-Me2C6H3, 2,6- i Pr2C6H3), exhibit the remarkable activities for ethylene dimerization in the presence of MAO, affording 1-butene exclusively (selectivity 90.4 to >99%). The steric bulk of the imido ligand plays an important role in the selectivity, and the electronic nature directly affects the activity.  相似文献   

4.
The origin of hydroxyl group tolerance in neutral and especially cationic molybdenum imido alkylidene N‐heterocyclic carbene (NHC) complexes has been investigated. A wide range of catalysts was prepared and tested. Most cationic complexes can be handled in air without difficulty and display an unprecedented stability towards water and alcohols. NHC complexes were successfully used with substrates containing the hydroxyl functionality in acyclic diene metathesis polymerization, homo‐, cross and ring‐opening cross metathesis reactions. The catalysts remain active even in 2‐PrOH and are applicable in ring‐opening metathesis polymerization and alkene homometathesis using alcohols as solvent. The use of weakly basic bidentate, hemilabile anionic ligands such as triflate or pentafluorobenzoate and weakly basic aromatic imido ligands in combination with a sterically demanding 1,3‐dimesitylimidazol‐2‐ylidene NHC ligand was found essential for reactive and yet robust catalysts.  相似文献   

5.
The (arylimido)vanadium(V) compound, [(p‐MeOC6H4N)V(OiPr)3] was demonstrated to undergo ligand exchange reaction with one or two equivalents of 2,6‐difluorophenol, affording the (arylimido)vanadium(V) compounds, [(p‐MeOC6H4N)V(OiPr)2(O‐2,6‐F2Ph)] and [(p‐MeOC6H4N)V(OiPr)(O‐2,6‐F2Ph)2]. Their X‐ray crystallographic analyses elucidated the μ‐isopropoxido‐bridged dimeric structures, wherein each vanadium atom has a trigonal‐bipyramidal arrangement with the imido and bridging isopropoxide ligands in the apical positions. The isopropoxide ligand was selectively employed as a bridging ligand between two central vanadium atoms. On the other hand, the reaction of the (arylimido)vanadium(V) compound, [(p‐MeOC6H4N)VCl3] and three equivalents of lithium 2,6‐difluorophenoxide gave the (arylimido)vanadium(V) compound, [(p‐MeOC6H4N)V(O‐2,6‐F2Ph)3]. In the crystal packing, the thus‐obtained compound showed a distorted trigonal‐bipyramidal environment at the vanadium atoms with the μ‐phenoxido‐bridged dimeric structure, wherein the 2,6‐difluorophenoxide ligand was found to serve as a bridging ligand.  相似文献   

6.
Vanadium complexes with tetradentate salen‐type ligands were first time explored in ethylene polymerizations. The effects of the vanadium complex structure, the alkyl aluminum cocatalysts type (EtAlCl2, Et2AlCl, Et3Al, and MAO), and the polymerization conditions (Al/V molar ratio, temperature) on polyethylene yield were explored. It was found that EtAlCl2 in conjunction with investigated vanadium complexes produced the most efficient catalytic systems. It was shown, moreover, that the structural changes of the tetradentate salen ligand (type of bridge which bond donor nitrogen atoms and type of substituent on aryl rings) affected activity of the catalytic system. The complexes containing ligands with cyclohexylene bridges were more active than those with ethylene bridges. Furthermore, the presence of electron‐withdrawing groups at the para position and electron‐donating substituents at the ortho position on the aryl rings of the ligands resulted in improved activity in relation to the systems with no substituents (with the exception of bulky t‐Bu group). The results presented also revealed that all vanadium complexes activated by common organoaluminum compounds gave linear polyethylenes with high melting points (134.8–137.6 °C), high molecular weights, and broad molecular weight distribution. The polymer produced in the presence of MAO possesses clearly lower melting point (131.4 °C) and some side groups (around 9/1000 C). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6940–6949, 2008  相似文献   

7.
A series of 6‐(benzimidazol‐2‐yl)‐N‐organylpyridine‐2‐carboxamide were synthesized and transformed into 6‐benzimidazolylpyridine‐2‐carboxylimidate as dianionic tridentate ligands. Bis(2‐(6‐methylpyridin‐2‐yl)‐benzimidazolyl)titanium dichloride ( C1 ) and titanium bis(6‐benzimidazolylpyridine‐2‐carboxylimidate) ( C2 – C8 ) were synthesized in acceptable yields. These complexes were systematically characterized by elemental and NMR analyses. Crystallographic analysis revealed the distorted octahedral geometry around titanium in both complexes C1 and C4 . Using MAO as cocatalyst, all complexes exhibited from good to high catalytic activities for ethylene polymerization. The neutral bis(6‐benzimidazolylpyridine‐2‐carboxylimidate)titanium ( C2 – C8 ) showed high catalytic activities and good stability for prolonged reaction time and elevated reaction temperature; however, C1 showed a short lifetime in catalysis as being observed at very low activity after 5 min. The elevated reaction temperature enhanced the productivity of polyethylenes with low molecular weights, whereas the reaction with higher ethylene pressure resulted in better catalytic activity and resultant polyethylenes with higher molecular weights. At higher ratio of MAO to titanium precursor, the catalytic system generated better activity with producing polyethylenes with lower molecular weights. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3411–3423, 2008  相似文献   

8.
Electrochemical reduction of vanadium(V) complex with cupferron (N‐nitroso‐N‐phenylhydroxylamine), VVO(cupf)2OH, has been studied by polarography in wide potential range to verify the catalytic mechanism of electroreduction of coordinated cupferron ligand. Reduction of the complex was studied in the concentration range from 2 ? 10?5 M to 10?3 M. Depending on the process conditions kinetics of catalytic reduction of coordinated cupferron is either controlled by adsorption step or governed by mixed control of diffusion and chemical reaction. Kinetic parameters of the reduction process are reported. Reduction of VVO(cupf)2OH complex is accompanied by adsorption and autoinhibition phenomena. V(II) ion in the surface bound complex of vanadium with cupferron catalyzes reduction of coordinated cupferronate ligands. In 1 mM solutions, the catalytic reduction of coordinated cupferron ligand shifts to more cathodic potentials due to formation of a monolayer of adsorbed vanadium(III)‐cupferron complexes. Reduction kinetics in the presence of tetraalkylammonium salt is consistent with multilayer cooperative adsorption of anionic vanadium(II)‐cupferron complex and tetraalkylammonium cations.  相似文献   

9.
The crystal structure of the first cyclopentadienyl vanadium(IV) pseudohalide complex, (η5‐C5H4CH3)2V(NCO)2, was determined. The molecule has a typical bent metallocene structure in which two η5‐bonded methyl‐cyclopentadienyl rings and two nitrogen atoms of cyanato ligands occupy the pseudotetrahedral coordination sites around the vanadium(IV) center. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
DFT(B3PW91) calculations have been carried out to rationalise the structural, electronic and spectroscopic properties of Mo and W imido M(NR1)(CHR2)(X)(Y) olefin metathesis catalysts by using either simplified or actual ligands of the experimental complexes. The calculated structures, energetics (preference for the syn isomer and alkylidene rotational barrier for the syn/anti interconversion), and spectroscopic properties (NMR J(C-H) coupling constants) are in good agreement with available experimental data. Additionally, the alkylidene nu(C-H) stretching frequencies, not available experimentally, have been calculated. These quasi-tetrahedral complexes have a linear imido group and a C-H alkylidene agostic interaction, which stabilizes the syn isomer. Whether looking at M(NR1)(CHR2)(X)(Y), M = Mo, W, or the isolobal Re complexes, Re(CR1)(CHR2)(X)(Y), a linear correlation is obtained between both the alkylidene nu(C-H) stretching frequencies and J(C-H) coupling constants with the calculated alkylidene C-H bond lengths. These correlations show that the strength of the alpha-C-H agostic interaction increases from alkylidyne Re to imido group 6 complexes and from Mo to W. The NBO and AIM Bader analyses show firstly that the imido and alkylidyne groups are both triply bonded to the metal, but that the triply bonded imido ligand is a weaker electron donor than the alkylidyne, hence the stronger alpha-C-H agostic interaction for group 6 imido complexes. Secondly, one of the pi bonds of the triply bonded ligand is weakened at the transition state of the alkylidene rotation: while no lone pair is formed, the metal-ligand triple bond is polarized. This is more favourable for an imido than for an alkylidyne ligand, hence the lower alkylidene rotational barrier for the former complexes. Conversely, the aryl imido is even less of an electron donor than the alkyl imido group, which in turn strengthens the alpha-C-H agostic interaction and lowers the alkylidene rotational barrier even more.  相似文献   

11.
Multifaceted Coordination Chemistry of Vanadium(V): Substitution, Rearrangement Reactions, and Condensation Reactions of Oxovanadium(V) Complexes of the Tripodal Oxygen Ligand LOMe? = [η5‐(C5H5)Co{P(OMe)2(O)}3]? The octahedral oxovanadium(V) complex [V(O)F2LOMe] of the tripodal oxygen ligand LOMe? = [η5‐(C5H5)Co{P(OMe)2(O)}3]? reacts with alcohols and phenol with substitution of one fluoride ligand to form alkoxo complexes [V(O)F(OR)LOMe], R = Me, Et, i‐Prop, Ph. In the presence of water, however, both fluoride ions are substituted and a complex with the composition VO2LOMe can be isolated. The crystal structure shows that the oxo‐bridged trimer [{V(O)(LOMe)O}3] was synthesized. In the presence of BF3 the fluoride ligand in the alkoxo‐complex [V(O)F(OEt)LOMe] can be exchanged for pyridine to yield [V(O)(OEt)pyLOMe]BF4. Analogous attempts to exchange the fluoride ligand for tetrahydrofuran and acetonitrile induces a rearrangement reaction that leads to the vanadium complex [V(O)(LOMe)2]BF4. The crystal structure of this compound has been determined. Its 1H and 31P‐NMR spectra show that it is a highly fluxional vanadium complex at ambient temperature in solution. The two tripodal ligands LOMe? coordinate the vanadium centre as bidentate or tridentate ligands. The exchange bidentate/tridentate becomes slow on the NMR time scale below about 200 K.  相似文献   

12.
Novel ruthenium (II) complexes were prepared containing 2‐phenyl‐1,8‐naphthyridine derivatives. The coordination modes of these ligands were modified by addition of coordinating solvents such as water into the ethanolic reaction media. Under these conditions 1,8‐naphthyridine (napy) moieties act as monodentade ligands forming unusual [Ru(CO)2Cl21‐2‐phenyl‐1,8‐naphthyridine‐ kN )(η1‐2‐phenyl‐1,8‐naphthyridine‐kN′)] complexes. The reaction was reproducible when different 2‐phenyl‐1,8‐naphthyridine derivatives were used. On the other hand, when dry ethanol was used as the solvent we obtained complexes with napy moieties acting as a chelating ligand. The structures proposed for these complexes were supported by NMR spectra, and the presence of two ligands in the [Ru(CO)2Cl21‐2‐phenyl‐1,8‐naphthyridine‐ kN )(η1‐2‐phenyl‐1,8‐naphthyridine‐kN′)] type complexes was confirmed using elemental analysis. All complexes were tested as catalysts in the hydroformylation of styrene showing moderate activity in N,N′‐dimethylformamide. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
A series of 2‐(1‐(2,4‐dibenzhydrylnaphthylimino)ethyl)‐6‐(1‐(arylimino)ethyl)pyridyliron(II) complexes ( Fe1 ? Fe5 ) was synthesized and characterized. The molecular structure of the representative Fe2 was determined by single‐crystal X‐ray diffraction, revealing a distorted pseudo‐square‐pyramidal geometry around the iron center. On activation with either methylaluminoxane (MAO) or modified methylaluminoxane (MMAO), all these iron complex precatalysts performed with high activities (up to 1.58 × 107 g (PE) mol?1 (Fe) h?1) toward ethylene polymerization, producing highly linear polyethylenes with high molecular weight and bimodal distribution, which was in accordance with high temperature 13C NMR, high T m values (T m ~130 °C) and the GPC curves of the obtained polyethylenes. Meanwhile, DFT calculation results also showed the good correlation between net charges on iron and experimental activities. Compared with previous bis(imino)pyridyliron analogues, the current iron complexes containing the benzhydrylnaphthyl groups exhibited relatively higher activities and better thermal‐stability at elevated temperatures, especially at 80 °C as the industrial operating temperature, and still showed high activities toward ethylene polymerization up to 8.57 × 106 g (PE) mol?1 (Fe) h?1 in the presence of co‐catalyst MMAO. In addition, these iron complex precatalysts all exhibited long lifetimes. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 988–996  相似文献   

14.
The catalytic property of propylene dimerization by several nickel (Ⅱ), cobalt (Ⅱ) complexes containing N-P bidentate ligands was studied in combination with organoaluminum co-catalysts. The effects of the type of aluminum co-catalysts and its relative amount, the nature of precursors in terms of ligand backbone and metal center were investigated. The results indicated that precursor I (N,N-dimethyl-2-(diphenylphosphino)aniline nickel (Ⅱ) dichloride) exhibited high activity in propylene dimerization in the presence of the strong Lewis acid Et3Al2Cl3, whereas low productivity by its cobalt analogues was observed under identical reaction conditions.  相似文献   

15.
Methoxy‐modified β‐diimines HL 1 and HL 2 reacted with Y(CH2SiMe3)3(THF)2 to afford the corresponding bis(alkyl)s [L1Y(CH2SiMe3)2] ( 1 ) and [L2Y(CH2SiMe3)2] ( 2 ), respectively. Amination of 1 with 2,6‐diisopropyl aniline gave the bis(amido) counterpart [L1Y{N(H)(2,6‐iPr2? C6H3)}2] ( 3 ), selectively. Treatment of Y(CH2SiMe3)3(THF)2 with methoxy‐modified anilido imine HL 3 yielded bis(alkyl) complex [L3Y(CH2SiMe3)2(THF)] ( 4 ) that sequentially reacted with 2,6‐diisopropyl aniline to give the bis(amido) analogue [L3Y{N(H)(2,6‐iPr2? C6H3)}2] ( 5 ). Complex 2 was “base‐free” monomer, in which the tetradentate β‐diiminato ligand was meridional with the two alkyl species locating above and below it, generating tetragonal bipyramidal core about the metal center. Complex 3 was asymmetric monomer containing trigonal bipyramidal core with trans‐arrangement of the amido ligands. In contrast, the two cis‐located alkyl species in complex 4 were endo and exo towards the O,N,N tridentate anilido‐imido moiety. The bis(amido) complex 5 was confirmed to be structural analogue to 4 albeit without THF coordination. All these yttrium complexes are highly active initiators for the ring‐opening polymerization of L ‐LA at room temperature. The catalytic activity of the complexes and their “single‐site” or “double‐site” behavior depend on the ligand framework and the geometry of the alkyl (amido) species in the corresponding complexes. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5662–5672, 2007  相似文献   

16.
Alkyl aryl ethers are an important class of compounds in medicinal and agricultural chemistry. Catalytic C(sp3)?O cross‐coupling of alkyl electrophiles with phenols is an unexplored disconnection strategy to the synthesis of alkyl aryl ethers, with the potential to overcome some of the major limitations of existing methods such as C(sp2)?O cross‐coupling and SN2 reactions. Reported here is a tandem photoredox and copper catalysis to achieve decarboxylative C(sp3)?O coupling of alkyl N‐hydroxyphthalimide (NHPI) esters with phenols under mild reaction conditions. This method was used to synthesize a diverse set of alkyl aryl ethers using readily available alkyl carboxylic acids, including many natural products and drug molecules. Complementarity in scope and functional‐group tolerance to existing methods was demonstrated.  相似文献   

17.
Two series of new dinuclear rare‐earth metal alkyl complexes supported by indolyl ligands in novel μ‐η211 hapticities are synthesized and characterized. Treatment of [RE(CH2SiMe3)3(thf)2] with 1 equivalent of 3‐(tBuN?CH)C8H5NH ( L1 ) in THF gives the dinuclear rare‐earth metal alkyl complexes trans‐[(μη211‐3‐{tBuNCH(CH2SiMe3)}Ind)RE(thf)(CH2SiMe3)]2 (Ind=indolyl, RE=Y, Dy, or Yb) in good yields. In the process, the indole unit of L1 is deprotonated by the metal alkyl species and the imino C?N group is transferred to the amido group by alkyl CH2SiMe3 insertion, affording a new dianionic ligand that bridges two metal alkyl units in μη211 bonding modes, forming the dinuclear rare‐earth metal alkyl complexes. When L1 is reduced to 3‐(tBuNHCH2)C8H5NH ( L2 ), the reaction of [Yb(CH2SiMe3)3(thf)2] with 1 equivalent of L2 in THF, interestingly, generated the trans‐[(μη211‐3‐{tBuNCH2}Ind)Yb(thf)(CH2SiMe3)]2 (major) and cis‐[(μη211‐3‐{tBuNCH2}Ind)Yb(thf)(CH2SiMe3)]2 (minor) complexes. The catalytic activities of these dinuclear rare‐earth metal alkyl complexes for isoprene polymerization were investigated; the yttrium and dysprosium complexes exhibited high catalytic activities and high regio‐ and stereoselectivities for isoprene 1,4‐cis‐polymerization.  相似文献   

18.
The water‐soluble phosphine ligands, 1,3,5‐triaza‐7‐phosphatricyclo[3.3.1.13,7]decane (tpa) and 1‐alkyl‐1‐azonia‐3,5‐diaza‐7‐phosphatricyclo[3.3.1.13,7]decane iodides (Rtpa+I), with alkyl=methyl(mtpa+I), ethyl (etpa+I) and n‐propyl, (ptpa+I), and mtpa+Cl react with [Rh2Cl2(CO)4] giving the rhodium(I) complexes [RhCl(CO)(tpa)2], [RhI(CO)(Rtpa+I)2], [RhCl‐­(CO)(mtpa+Cl)3] and [RhI(CO)(Rtpa+I)3]. The properties and reactivities of the complexes have been investigated using 1H and 31PNMR and IR spectroscopies. The five‐coordinate complexes in solutions show dynamic properties. The complexes are catalysts of the water‐gas shift reaction, the hydrogenation of CC and CO bonds, the hydroformylation of alkenes and the isomerization of unsaturated compounds. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

19.
The C‐alkyl groups of cationic triruthenium cluster complexes of the type [Ru3(μ‐H)(μ‐κ2N1,C2 ‐L)(CO)10]+ (HL represents a generic C‐alkyl‐N‐methylpyrazium species) have been deprotonated to give kinetic products that contain unprecedented C‐alkylidene derivatives and maintain the original edge‐bridged decacarbonyl structure. When the starting complexes contain various C‐alkyl groups, the selectivity of these deprotonation reactions is related to the atomic charges of the alkyl H atoms, as suggested by DFT/natural‐bond orbital (NBO) calculations. Three additional electronic properties of the C‐alkyl C? H bonds have also been found to correlate with the experimental regioselectivity because, in all cases, the deprotonated C? H bond has the smallest electron density at the bond critical point, the greatest Laplacian of the electron density at the bond critical point, and the greatest total energy density ratio at the bond critical point (computed by using the quantum theory of atoms in molecules, QTAIM). The kinetic decacarbonyl products evolve, under appropriate reaction conditions that depend upon the position of the C‐alkylidene group in the heterocyclic ring, toward face‐capped nonacarbonyl derivatives (thermodynamic products). The position of the C‐alkylidene group in the heterocyclic ring determines the distribution of single and double bonds within the ligand ring, which strongly affects the stability of the neutral decacarbonyl complexes and the way these ligands coordinate to the metal atoms in the nonacarbonyl products. The mechanisms of these decacarbonylation processes have been investigated by DFT methods, which have rationalized the structures observed for the final products and have shed light on the different kinetic and thermodynamic stabilities of the reaction intermediates, thus explaining the reaction conditions experimentally required by each transformation.  相似文献   

20.
A series of copper(II) complexes containing 6‐methyl‐2‐oxo‐1,2‐dihydroquinoline‐3‐carboxaldehyde‐derived Schiff bases have been synthesized and characterised using various analytical and spectroscopic techniques. X‐ray crystallographic analysis confirmed the true coordinating nature of ligands with copper ion. The ligands exhibited ONS tridentate neutral and monobasic coordination. The spectroscopic results evidenced the interaction of the ligands and their copper(II) complexes with nucleic acid/serum albumin. Further, the complexes showed significant activity against human skin cancer cell line (A431) and less toxicity against human keratinocyte cell line (HaCaT). Acridine orange/propidium iodide dual staining studies indicated that the major cause of A431 cell death was through necrosis. By comparing the biological activity of all the ligands, Cu(II) complexes and standard (cisplatin), complex [Cu(H‐6MOQtsc‐Ph)(H2O)]?NO3 ( 4 ) exhibited better activity than others, the activity being arranged as follows: 4  >  1  > cisplatin >  3  >  2 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号