首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The microwave spectrum of the ground state of the gauche rotamer of allylcyanide (CH2=CHCH2 CN) has been remeasured. The obtained rotational constants A = 19 707.9 ± 0.1, B = 2 619.74 ± 0.05 and C = 2 497.43 ± 0.05 (in MHz) were in good agreement with a structural model. The dipole moment components were also fitted as |μa| = 3.50 ± 0.05, |μb| = 1.70 ± 0.02 and |μc| = 0.19 ± 0.04 (in Debye). The results are in both cases in good agreement with a CCCC dihedral angle near the expected 120°.  相似文献   

2.
The molecular structure of 1,2-difluoroethane in the gas phase has been determined by electron diffraction at room temperature. Only the gauche conformation was found, the dihedral angle F-C-C-F is 74.5°. The bond lengths rg(1) are: r(C-C) = 1.535 Å, r(C-F) = 1.394 Å, r(C-H) = 1.13 Å. The valency angles are: α(C-C-F) = 108.3, α(C-C-H) = 108.3. The dihedral angle between the C-C-F and C-C-H planes is 113.6°.  相似文献   

3.
The geometries of several conformations of ethyl and isopropyl formate were optimized by the ab initio gradient method on the 4-21G level. The calculations are in agreemnt with the existence of two conformers of ethyl formate of nearly equal energy. The COCC torsional angle in one is anti (180°) and in the other is gauche (about 80°). The equilibrium configuration of the isopropyl group in the formate is found to be unsymmetrical, with a COCH torsional angle of about 40°. A second minimum of torsional energy, at COCH = 180°, is 1.2 kcal/mol less stable than the unsymmetrical form. The calculations demonstrate the tranferability of internal rotational-potential parameters and of conformationally dependent geometrical trends between ethyl and isopropyl formate. There is good agreement between the calculated results and empirical potential-energy functions and rotational constants determined from microwave spectroscopy.  相似文献   

4.
The infrared (3100-40 cm(-1)) and Raman (3100-20 cm(-1)) spectra of gaseous and solid n-propylsilane, CH(3)CH(2)CH(2)SiH(3) and the Si-d(3) isotopomer, CH(3)CH(2)CH(2)SiD(3), have been recorded. Additionally, the Raman spectra of the liquids have been recorded and qualitative depolarization values obtained. Both the anti and gauche conformers have been identified in the fluid phases but only the anti conformer remains in the solid. Variable temperature (-105 to -150 degrees C) studies of the infrared spectra of n-propylsilane dissolved in liquid krypton have been recorded and the enthalpy difference has been determined to be 220+/-22 cm(-1) (2.63+/-0.26 kJ mol(-1)) with the anti conformer the more stable form. A similar value of 234+/-23 cm(-1) (2.80+/-0.28 kJ mol(-1)) was obtained for deltaH for the Si-d(3) isotopomer. At ambient temperature it is estimated that there is 30+/-2% of the gauche conformer present. The potential function governing the conformation interchange has been estimated from the far infrared spectral data, the enthalpy difference, and the dihedral angle of the gauche conformer, which is compared to the one predicted from ab initio MP2/6-31G(d) calculations. The barriers to conformational interchange are: 942, 970 and 716 cm(-1) for the anti to gauche, gauche to gauche, and gauche to anti conformers, respectively. Relatively complete vibrational assignments are proposed for both the n-propylsilane-d(0) and Si-d(3) molecules based on the relative infrared and Raman spectral intensities, infrared band contours, depolarization ratios, and normal coordinate calculations. The geometrical parameters, harmonic force constants, vibrational frequencies, infrared intensities, Raman activities and depolarization ratios, and energy differences have been obtained for the anti and gauche conformers from ab initio MP2/6-31G(d) calculations. Structural parameters and energy differences have also been obtained utilizing the larger 6-311 + G(d,p) and 6-311 + G(2d,2p) basis sets. From the isolated Si-H stretching frequency from the Si-d(2) isotopomer the r(0) distances of 1.484 and 1.485 A have been determined for the SiH(s) and SiH(a) bonds, respectively, for the anti conformer, and 1.486 A for the SiH bond for the gauche conformer. Utilizing previously reported microwave rotational constants for the anti conformer and the determined SiH distances along with ab initio predicted parameters 'adjusted r(0)' parameters have been obtained for the anti conformer. The results are discussed and compared to those obtained for some similar molecules.  相似文献   

5.
Infrared absorption intensities of fundamental bands of propyl halides n-C3 H7 Cl, n-C3H7 Br and n-C3H7I were measured in the pure liquid state. In order to obtain L matrix data necessary for the intensity computation, normal frequencies of the rotational isomers were calculated, and LSFF force constants were determined by the least squares method so as to attain the best fit between the observed and calculated frequencies. By applying the absolute intensity method, energy differences between the rotational isomers were evaluated, which are in quite good agreement with values obtained by the temperature variation method.  相似文献   

6.
The geometry and energy of styrene have been calculated using the 6-31G basis set as a function of the CβC2C1C2 dihedral angle-Φ = 0°(cis), 15°, 30°, 60° and 90° — assuming that the vinyl and phenyl groups remain planar, but otherwise with full geometry optimization. Similar calculations have been carried out for 1,3-butadiene and 3-methylene-1,4-pentadiene (MPD) where rotation about 180° generates a different and not the same conformer. The torsional potential energy curve for styrene has a very flat minimum Φ = 0, i.e. the cis structure is the most stable, whereas butadiene and MPD have minima in the region Φ = 37° to 40°, indicative of more stable gauche structures. For styrene the barrier height Φ = 90° is 131.1 KJ mol?1. These results provide strong support for the potential function obtained by Hollas and Ridley from single level vibronic fluorescence and other spectroscopic data. The distortion of the benzene ring brought about the vinyl group substitution is discussed, also the variation of the C/C and H/C bond lenghts with Φ and the change in charge on the vinyl group and the polarity of the various bonds in the conversion of the cis into the 90° gauche conformer. The stabilization energy for styrene relative to that for benzene has been evaluated according to various criteria, and, in addition, the energy associated with the distortion of the ring.  相似文献   

7.
In 1,2-difluoroethane, the gauche conformation predominates strongly. This circumstance allows the determination of its relative geometry by NMR in liquid crystals, though certain assumptions have still to be made, e.g. neglect of intermediate conformations. The principal result of the structure determination is the value of 69–70° for the dihedral angle ∠FCCF, which is quite insensitive to variations of the other internal coordinates. The value is, within the limits of error, equal to that obtained by microwave spectroscopy, but deviates from results of electron diffraction measurements.It is impossible to describe the average orientation of 1,2-difluoroethane using less than three orientation parameters. This indicates that the interconversion of the two gauche rotamers is slow compared with the reorientational motion.In an attempt to explain the lower energy of the gauche conformation relative to the trans conformation, and the high value of the dihedral angle, ∠FCCF, some explorative empirical calculations were carried out. These could not, however, reproduce the experimental data.  相似文献   

8.
A value of 74(+/-4) degrees was determined from NMR-observed dipolar couplings for the rotational dihedral angle of the monosuccinate anion in an aprotic liquid-crystal solution of the gauche conformation of tetraoctylammonium monosuccinate. This value is in reasonable agreement with other, somewhat less definitive, evidence gleaned from isotropic vicinal proton-proton couplings of the essentially completely gauche preference of the monosuccinate anion in tert-butyl alcohol and aprotic solvents, such as DMSO and THF, and quantum computations for the monoanion in THF.  相似文献   

9.
The optical activity of conjugated dienes is investigated by means of ab initio SCF–CI calculations. The computed electronic spectrum of trans-1,3-butadiene is shown to be in good agreement with the results of more rigorous calculations of the valence transitions and in satisfactory agreement with experiment. The optical rotatory strengths of the lower electronic transitions of twisted 1,3-butadiene as a function of dihedral angle are presented and simulated CD spectra are produced. The NV12 → π3*) transition is predicted to have a positive rotational strength for all dihedral angles that correspond to a right-handed twist of the chromophore, in accord with the empirically deduced “diene rule” although for a twist angle of 60°, the rotatory strength is calculated to be almost zero. The role of the orientation of allylic bonds is investigated in the model system 1-butene in which the rotational strength of the π → π* transition as a function of rotation about the 2,3 bond is determined. The effect of allylic bond disposition in dienes on the optical activity of the long-wavelength π2 → π3* transition is simulated by use of the exciton coupling model of Harada and Nakanishi in which two 1-butene molecules with suitable geometries are coupled via interactions of the electric dipole transition moments of their π → π* transitions. The model systems 1,3-butadiene and 1-butene are used to rationalize the apparently anomalous optical activity of (?)-α-phellandrene and (?)-β-phellandrene, both of which should have a diene chromophore with a right-handed twist in their most stable conformers and so should be dextrorotatory. The experimental CD spectrum of α-phellandrene is determined at several temperatures down to ?180°C. The observed variation of the apparent rotational strength of the NV1 transition is in good agreement with that predicted by use of the exciton coupling model.  相似文献   

10.
Improved full ab initio optimizations of the molecular structure of biphenyl in twisted minimum energy, coplanar, and perpendicular conformations by use of Poles's GAUSSIAN 82 program have been performed in the 6-31G basis set. These lead to geometries and energies of much higher reliability than our earlier STO-3G results. The torsional angle Φmin obtained now is 45.41° in close agreement with the recent experimental value of 44.4° ± 1.2°. Calculated CC distances may be converted to experimental ED rg-values by means of independently determined linear regression correlations with very high statistical confidence, although they agree better with experimental x ray data for coplanar biphenyl without this correction. Calculated intramolecular angles are very similar for both STO-3G and 6-31G basis sets. The calculated torsional energy barrier towards Φ = 90° (ΔE90) is 6.76 kJ/mol in close agreement with the experimental-31G value of 6.5 ± 2.0 kJ/mol. For coplanar biphenyl with D2h-symmetry the calculated torsional energy barrier ΔE0 is 13.26 kJ/mol which is surprisingly much higher than the experimental value of 6.0 ± 2.1 kJ/mol. This discrepancy could not be resolved by optimizations assumed for two kinds of distortions of planarity of orthohydrogens from the molecular plane of the coplanar carbon atoms. But for the twisted minimum energy conformation asymmetric bending of ortho-H atoms lead to a torsional angle Φmin = 44.74° together with a dihedral angle towards ortho-H of 1.22°, and consequently even to an increase of torsional energy barriers to ΔE0 = 13.51 and ΔE90 = 6.91 kJ/mol.  相似文献   

11.
The normal modes of (CH3)3MN(CH3)2 (M= Si, Ge or Sn) compounds are discussed using infrared and Raman spectra analysis. A valence force field model has been utilized to calculate the frequencies and potentiel energy distribution for each molecule in different structural hypotheses.Experimental results and calculated values are in good agreement when the dihedral angle ψ between the two MNC planes decreases from silicon (144°) to germanium (130°) to tin (120°).The differences in the molecular geometries may be related to the basicity and to the Pπdπ interactions of these compounds.  相似文献   

12.
The molecular structure and conformation of diisopropylamine have been determined by gas electron diffraction with the aid of vibrational spectroscopy and molecular mechanics calculations.Only one conformer with the skeletal geometry of C2 symmetry has been detected. The dihedral angle, CNCH, has been determined to be 52(4)°. The difference between the NCC angles at the gauche and trans positions with respect to the opposite NC bond is 2.4°. The CNC bond angle, 120.1(10)°, and the CN bond length, 1.470(4) Å, are 8.3° and 0.014 Å larger than the corresponding values of dimethylamine respectively  相似文献   

13.
Density functional theory (DFT), using the B3-LYP/6-31G(d,p) method have been used to investigate the conformation and vibrational spectra of aminopropylsilanetriol (APST) NH2CH2CH2CH2Si(OH)3. The potential function for CCCSi torsion gives rise to two distinct conformers trans and gauche. The predicted energy of the more stable trans conformer is 337 cm-1 less than the energy of gauche conformer. The calculated barriers to the conformation interchange are: 1095, 2845 and 438 cm-1 for the trans to gauche, gauche to gauche and gauche to trans conformers, respectively. For the trans conformer the potential energy curve for the Si(OH)3 groups torsion in APST has been calculated changing the HOSiC dihedral angle. The barrier for the internal rotation of 3065 cm-1 has been obtained. The optimized molecular structure of APST dimer calculated for trans conformer has a SiOSi angle of 143.2 degrees, and a SiOSi bond length of 0.164 nm. A complete vibrational assignment for both conformers as well as for trans-dimer is supported by the normal coordinate analysis, calculated IR intensities as well as Raman activities. On the basis of the results, the vibrational spectra of APST aqueous solution and APST polymer have been analyzed. The average error between the observed and calculated frequencies is 14 cm-1.  相似文献   

14.
The planarity of the second stable conformer of 1,3‐butadiene, the archetypal diene for the Diels–Alder reaction in which a planar conjugated diene and a dienophile combine to form a ring, is not established. The most recent high level calculations predicted the species to adopt a twisted, gauche structure owing to steric interactions between the inner terminal hydrogens rather than a planar, cis structure favored by the conjugation of the double bonds. The structure cis‐1,3‐butadiene is unambiguously confirmed experimentally to indeed be gauche with a substantial dihedral angle of 34°, in excellent agreement with theory. Observation of two tunneling components indicates that the molecule undergoes facile interconversion between two equivalent enantiomeric forms. Comparison of experimentally determined structures for gauche‐ and trans‐butadiene provides an opportunity to examine the effects of conjugation and steric interactions.  相似文献   

15.
The geometry and energy of 2-aza-1,3-butadiene and 2,3-diaza-1,3-butadiene have been calculated using the 6-31G* basis set as a function of the CNCC and CNNC dihedral angles, respectively. With the 2-aza derivative potential minima are located at 0° (trans) and at about 130° for a gauche structure approximately 9.5 kJ mol?1 less stable than the trans. Potential maxima are at about 75° giving a gauche barrier height of approximately 19 kJ mol?1 relative to the trans structure, and at 180° (cis) giving a barrier height of approximately 14.5 kJ mol?1 relative to the 130° gauche structure. With the 2,3-diaza derivative the gauche barrier has disappeared and there are a series of gauche structures in the region 70°–100° of almost equal energy 12.5-15 kJ mol?1 less stable than the trans. In addition the cis barrier is much greater, nearly 70 kJ mol?1 relative to the trans structure. Inclusion of electron correlation, accounting for about 50% of the correlation energy, produces no significant changes in the shape of the potential energy curves. There are systematic and progressive changes in almost all the geometrical parameters as the ?CH? groups in butadiene are replaced by ?N? . The outward tilt and compression within the methylene groups show adverse steric interactions to be operative in the cis structures. The values of Vnn indicate that gauche structures of both the 2-aza and the 2,3-diaza derivatives near the cis structure are more compact (as with butadiene), and gauche structures of the 2-aza derivative near the trans structure are less compact (as with butadiene). Originating in the changes in bond lengths and bond angles, rotation-independent nuclear–nuclear interactions again play an important role.  相似文献   

16.
The microwave spectrum of 3-fluoropropionitrile, FCH(2)CH(2)C≡N, has been investigated in the whole 17-75 GHz spectral region. Selected portions of the spectrum in the 75-95 GHz have also been recorded. The microwave spectra of the ground state as well as of three vibrationally excited states of each of two conformers have been assigned. The spectra of the vibrationally excited states belong to the lowest torsional and bending vibrations. The F-C-C-C chain of atoms is exactly antiperiplanar in one of these rotamers and synclinal in the second conformer. The F-C-C-C dihedral angle is 65(2)° in the synclinal form. The energy difference between the two forms has been obtained from relative intensity measurements performed on microwave transitions. It was found that the antiperiplanar conformer is more stable than the synclinal form by 1.4(5) kJ/mol. It is argued that the gauche effect is a significant force in this compound. Quantum chemical calculations at the high CCSD(full)/cc-pVTZ, MP2(full)/cc-pVTZ, and B3LYP/cc-pVTZ levels of theory have been performed. Most, but not all, of the theoretical predictions are in good agreement with experiment.  相似文献   

17.
The microwave spectrum of 2-fluoroethylisocyanide, FCH(2)CH(2)N≡C, has been investigated in the whole 50-120 GHz spectral region. Selected portions of the spectrum in the range of 18-50 GHz have also been recorded. The microwave spectra of the ground state and vibrationally excited states of two conformers have been assigned. Accurate spectroscopic constants have been derived from a large number of microwave transitions. The F-C-C-N chain of atoms is antiperiplanar in one of these rotamers and synclinal in the second conformer. The energy difference between the two forms was obtained from relative intensity measurements. It was found that the synclinal conformer is favored over the antiperiplanar form by 0.7(5) kJ/mol. Quantum chemical calculations at the high CCSD/cc-pVTZ and B3LYP/cc-pVTZ levels of theory were performed. Most, but not all, of the spectroscopic constants predicted in these calculations are in good agreement with the experimental counterparts. The theoretical calculations correctly indicate that the F-C-C-N dihedral angle in the synclinal form is about 67° but underestimate the magnitude of the gauche effect and erroneously predict the antiperiplanar rotamer to be 1.3-1.6 kJ/mol more stable than the synclinal conformer.  相似文献   

18.
Previous investigators have shown that statistical mechanical averages for configuration-dependent physical properties of long unperturbed polyoxyethylene chains are sensitive to the gauche–trans energy difference for rotation about C? C bonds. Agreement between theory and experiment could be obtained only by significant adjustment of this energy away from values predicted by semiempirical conformational energy computations. The present work examines the success of MM 2 in evaluating conformational properties of long unperturbed polyoxyethylene chains. Calculations are performed which identify the rotational isomers, and their energies, for the indicated bonds in CH3OCH2CH2O? CH2? CH2? OCH2CH2OCH3. These energies are used to assign statistical weights utilized in the configuration partition function for a rotational isomeric state chain with symmetric threefold interdependent rotations. The customary generator matrix scheme is employed to evaluate the mean-square unperturbed end-to-end distance, mean-square unperturbed dipole moment, and their temperature coefficients. Contrary to computational schemes employed previously, MM 2 is found to provide an estimate of the gauche–trans energy difference for rotation about C? C which is in harmony with the known dimensions and dipole moments of the unperturbed polymer. MM 2 also provides good estimates for most of the other parameters required in the rotational isomeric state treatment. A notable exception is provided by the gauche–trans energy difference for rotation about the C? O bond. This energy difference is overestimated by MM 2.  相似文献   

19.
2-Chloroethylisocyanide (ClCH(2)CH(2)N≡C) has been synthesized, and its microwave spectrum has been investigated in the 20-97 GHz spectral region. The spectra of (35)Cl and (37)Cl isotopologues of two conformers have been assigned. The Cl-C-C-N chain of atoms is antiperiplanar in one of these rotamers and synclinal in the second. The energy difference between the two forms has been obtained from relative intensity measurements. It was found that the antiperiplanar conformer is favored over the synclinal form by 4.3(8) kJ/mol. Quantum chemical calculations at the CCSD/cc-pVTZ and B3LYP/cc-pVTZ levels of theory have been performed. Most, but not all, of the spectroscopic constants predicted in these calculations are in good agreement with their experimental counterparts. The theoretical calculations correctly predict that the 2-chloroethylisocyanide exists as a mixture of an antiperiplanar and a synclinal conformer, with the former about 3.5 kJ/mol more stable than the latter. Both methods of calculations find that the antiperiplanar rotamer has a symmetry plane. The dihedral angle formed by the Cl-C-C-N link of atoms of the synclinal form is 67° according to the CCSD calculations. It is estimated from a comparison with the experimental rotational constants that this dihedral angle is uncertain by ±3°.  相似文献   

20.
Wide-line NMR spectra have been obtained on an oriented sample of drawn nylon 66 fibers at temperatures between ?196°C and 200°C and at alignment angles between the fiber axis and the magnetic field of 0°, 45°, and 90°. At ?196°C, 20°C, and 180°C, the complete angle dependence of the NMR spectrum has been measured. The second moments of these spectra have been compared to theoretical second moments calculated for various models of chain segmental motion in an attempt to elucidate the mechanisms involved in the low-temperature segmental motion (γ process) and the high-temperature segmental motion (αc process). In agreement with earlier suggestions, the present results indicate that the γ process consists of segmental motion in noncrystalline regions. The overall decrease in second moment caused by the γ process is consistent with a model in which all noncrystalline segments rotate around axes nearly fixed in space. Furthermore, this decrease shows a pronounced dependence on the alignment angle. It is believed that this is due to tie molecules which become highly oriented along the fiber axis during drawing; their axes of rotation will therefore be nearly parallel to the fiber axis. The segments in noncrystalline entities such as chain folds and chain ends are less well oriented along the fiber axis and make an essentially isotropic contribution to the second moment decrease. The second moment at 180°C indicates the presence of considerable motion in the crystalline regions, and this motion is denoted the αc process. The second moment Sc of the crystalline regions is strongly dependent on the alignment angle, the predominant feature being a relatively high value of the second moment when the fiber axis is directed parallel to the magnetic field. This is in qualitative, but not quantitative, agreement with the motional model recently advanced by McMahon, which assumes full rotation of the chains around their axes. Excellent quantitative agreement with experiment has been obtained by superimposition of rotational oscillation around the chain axis of amplitude roughtly 50°, and torsion of the chains with neighboring CH2 groups oscillating around the C? C bond with a relative amplitude of about 40°. A model in which the chains perform rotational jumps of 60° between two equilibrium sites has also been considered (60° flip-flop motion). A distinction between this model and rotational oscillation has not been possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号