首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We consider two-stage multi-leader-follower games, called multi-leader-follower games with vertical information, where leaders in the first stage and followers in the second stage choose simultaneously an action, but those chosen by any leader are observed by only one “exclusive” follower. This partial unobservability leads to extensive form games that have no proper subgames but may have an infinity of Nash equilibria. So it is not possible to refine using the concept of subgame perfect Nash equilibrium and, moreover, the concept of weak perfect Bayesian equilibrium could be not useful since it does not prescribe limitations on the beliefs out of the equilibrium path. This has motivated the introduction of a selection concept for Nash equilibria based on a specific class of beliefs, called passive beliefs, that each follower has about the actions chosen by the leaders rivals of his own leader. In this paper, we illustrate the effectiveness of this concept and we investigate the existence of such a selection for significant classes of problems satisfying generalized concavity properties and conditions of minimal character on possibly discontinuous data.  相似文献   

2.
The mean field limit of large-population symmetric stochastic differential games is derived in a general setting, with and without common noise, on a finite time horizon. Minimal assumptions are imposed on equilibrium strategies, which may be asymmetric and based on full information. It is shown that approximate Nash equilibria in the n-player games admit certain weak limits as n tends to infinity, and every limit is a weak solution of the mean field game (MFG). Conversely, every weak MFG solution can be obtained as the limit of a sequence of approximate Nash equilibria in the n-player games. Thus, the MFG precisely characterizes the possible limiting equilibrium behavior of the n-player games. Even in the setting without common noise, the empirical state distributions may admit stochastic limits which cannot be described by the usual notion of MFG solution.  相似文献   

3.
We study an interactive framework that explicitly allows for nonrational behavior. We do not place any restrictions on how players’ behavior deviates from rationality, but rather, on players’ higher-order beliefs about the frequency of such deviations. We assume that there exists a probability p such that all players believe, with at least probability p, that their opponents play rationally. This, together with the assumption of a common prior, leads to what we call the set of p-rational outcomes, which we define and characterize for arbitrary probability p. We then show that this set varies continuously in p and converges to the set of correlated equilibria as p approaches 1, thus establishing robustness of the correlated equilibrium concept to relaxing rationality and common knowledge of rationality. The p-rational outcomes are easy to compute, also for games of incomplete information. Importantly, they can be applied to observed frequencies of play for arbitrary normal-form games to derive a measure of rationality \(\overline{p}\) that bounds from below the probability with which any given player chooses actions consistent with payoff maximization and common knowledge of payoff maximization.  相似文献   

4.
In this paper, we consider a class of n-person noncooperative games, where the utility function of every player is given by a homogeneous polynomial defined by the payoff tensor of that player, which is a natural extension of the bimatrix game where the utility function of every player is given by a quadratic form defined by the payoff matrix of that player. We will call such a problem the multilinear game. We reformulate the multilinear game as a tensor complementarity problem, a generalization of the linear complementarity problem; and show that finding a Nash equilibrium point of the multilinear game is equivalent to finding a solution of the resulted tensor complementarity problem. Especially, we present an explicit relationship between the solutions of the multilinear game and the tensor complementarity problem, which builds a bridge between these two classes of problems. We also apply a smoothing-type algorithm to solve the resulted tensor complementarity problem and give some preliminary numerical results for solving the multilinear games.  相似文献   

5.
We consider an n-player finite strategic game. The payoff vector of each player is a random vector whose distribution is not completely known. We assume that the distribution of a random payoff vector of each player belongs to a distributional uncertainty set. We define a distributionally robust chance-constrained game using worst-case chance constraint. We consider two types of distributional uncertainty sets. We show the existence of a mixed strategy Nash equilibrium of a distributionally robust chance-constrained game corresponding to both types of distributional uncertainty sets. For each case, we show a one-to-one correspondence between a Nash equilibrium of a game and a global maximum of a certain mathematical program.  相似文献   

6.
We consider an n-player non-cooperative game with random payoffs and continuous strategy set for each player. The random payoffs of each player are defined using a finite dimensional random vector. We formulate this problem as a chance-constrained game by defining the payoff function of each player using a chance constraint. We first consider the case where the continuous strategy set of each player does not depend on the strategies of other players. If a random vector defining the payoffs of each player follows a multivariate elliptically symmetric distribution, we show that there exists a Nash equilibrium. We characterize the set of Nash equilibria using the solution set of a variational inequality (VI) problem. Next, we consider the case where the continuous strategy set of each player is defined by a shared constraint set. In this case, we show that there exists a generalized Nash equilibrium for elliptically symmetric distributed payoffs. Under certain conditions, we characterize the set of a generalized Nash equilibria using the solution set of a VI problem. As an application, the random payoff games arising from electricity market are studied under chance-constrained game framework.  相似文献   

7.
This paper studies n-player \((n\ge 3)\) undiscounted repeated games with imperfect monitoring. We prove that all uniform communication equilibrium payoffs of a repeated game can be obtained as Nash equilibrium payoffs of the game extended by unmediated cheap talk. We also show that all uniform communication equilibrium payoffs of a repeated game can be reached as Nash equilibrium payoffs of the game extended by a pre-play correlation device and a cheap-talk procedure that only involves public messages; furthermore, in the case of imperfect public and deterministic signals, no cheap talk is conducted on the equilibrium path.  相似文献   

8.
This paper characterizes the set of all the Nash equilibrium payoffs in two player repeated games where the signal that the players get after each stage is either trivial (does not reveal any information) or standard (the signal is the pair of actions played). It turns out that if the information is not always trivial then the set of all the Nash equilibrium payoffs coincides with the set of the correlated equilibrium payoffs. In particular, any correlated equilibrium payoff of the one shot game is also a Nash equilibrium payoff of the repeated game.For the proof we develop a scheme by which two players can generate any correlation device, using the signaling structure of the game. We present strategies with which the players internally correlate their actions without the need of an exogenous mediator.  相似文献   

9.
We are concerned with Nash equilibrium points forn-person games. It is proved that, given any real algebraic numberα, there exists a 3-person game with rational data which has a unique equilibrium point andα is the equilibrium payoff for some player. We also present a method which allows us to reduce an arbitraryn-person game to a 3-person one, so that a number of questions about generaln-person games can be reduced to consideration of the special 3-person case. Finally, a completely mixed game, where the equilibrium set is a manifold of dimension one, is constructed.  相似文献   

10.
We study many-to-many matching with substitutable and cardinally monotonic preferences. We analyze stochastic dominance (sd) Nash equilibria of the game induced by any probabilistic stable matching rule. We show that a unique match is obtained as the outcome of each sd-Nash equilibrium. Furthermore, individual-rationality with respect to the true preferences is a necessary and sufficient condition for an equilibrium outcome. In the many-to-one framework, the outcome of each equilibrium in which firms behave truthfully is stable for the true preferences. In the many-to-many framework, we identify an equilibrium in which firms behave truthfully and yet the equilibrium outcome is not stable for the true preferences. However, each stable match for the true preferences can be achieved as the outcome of such equilibrium.  相似文献   

11.
The aim of the paper is to explore strategic reasoning in strategic games of two players with an uncountably infinite space of strategies the payoff of which is given by McNaughton functions—functions on the unit interval which are piecewise linear with integer coefficients. McNaughton functions are of a special interest for approximate reasoning as they correspond to formulas of infinitely valued Lukasiewicz logic. The paper is focused on existence and structure of Nash equilibria and algorithms for their computation. Although the existence of mixed strategy equilibria follows from a general theorem (Glicksberg, 1952) [5], nothing is known about their structure neither the theorem provides any method for computing them. The central problem of the article is to characterize the class of strategic games with McNaughton payoffs which have a finitely supported Nash equilibrium. We give a sufficient condition for finite equilibria and we propose an algorithm for recovering the corresponding equilibrium strategies. Our result easily generalizes to n-player strategic games which don't need to be strictly competitive with a payoff functions represented by piecewise linear functions with real coefficients. Our conjecture is that every game with McNaughton payoff allows for finitely supported equilibrium strategies, however we leave proving/disproving of this conjecture for future investigations.  相似文献   

12.
The problem of strategic stability of long-range cooperative agreements in dynamic games with coalition structures is investigated. Based on imputation distribution procedures, a general theoretical framework of the differential game with a coalition structure is proposed. A few assumptions about the deviation instant for a coalition are made concerning the behavior of a group of many individuals in certain dynamic environments.From these, the time-consistent cooperative agreement can be strategically supported by ε-Nash or strong ε-Nash equilibria. While in games in the extensive form with perfect information, it is somewhat surprising that without the assumptions of deviation instant for a coalition, Nash or strong Nash equilibria can be constructed.  相似文献   

13.
We introduce natural strategic games on graphs, which capture the idea of coordination in a local setting. We study the existence of equilibria that are resilient to coalitional deviations of unbounded and bounded size (i.e., strong equilibria and k-equilibria respectively). We show that pure Nash equilibria and 2-equilibria exist, and give an example in which no 3-equilibrium exists. Moreover, we prove that strong equilibria exist for various special cases. We also study the price of anarchy (PoA) and price of stability (PoS) for these solution concepts. We show that the PoS for strong equilibria is 1 in almost all of the special cases for which we have proven strong equilibria to exist. The PoA for pure Nash equilbria turns out to be unbounded, even when we fix the graph on which the coordination game is to be played. For the PoA for k-equilibria, we show that the price of anarchy is between \(2(n-1)/(k-1) - 1\) and \(2(n-1)/(k-1)\). The latter upper bound is tight for \(k=n\) (i.e., strong equilibria). Finally, we consider the problems of computing strong equilibria and of determining whether a joint strategy is a k-equilibrium or strong equilibrium. We prove that, given a coordination game, a joint strategy s, and a number k as input, it is co-NP complete to determine whether s is a k-equilibrium. On the positive side, we give polynomial time algorithms to compute strong equilibria for various special cases.  相似文献   

14.
Polytope Games     
Starting from the definition of a bimatrix game, we restrict the pair of strategy sets jointly, not independently. Thus, we have a set , which is the set of all feasible strategy pairs. We pose the question of whether a Nash equilibrium exists, in that no player can obtain a higher payoff by deviating. We answer this question affirmatively for a very general case, imposing a minimum of conditions on the restricted sets and the payoff. Next, we concentrate on a special class of restricted games, the polytope bimatrix game, where the restrictions are linear and the payoff functions are bilinear. Further, we show how the polytope bimatrix game is a generalization of the bimatrix game. We give an algorithm for solving such a polytope bimatrix game; finally, we discuss refinements to the equilibrium point concept where we generalize results from the theory of bimatrix games.  相似文献   

15.
In this paper, we consider discrete-time \(N\) -person constrained stochastic games with discounted cost criteria. The state space is denumerable and the action space is a Borel set, while the cost functions are admitted to be unbounded from below and above. Under suitable conditions weaker than those in (Alvarez-Mena and Hernández-Lerma, Math Methods Oper Res 63:261–285, 2006) for bounded cost functions, we also show the existence of a Nash equilibrium for the constrained games by introducing two approximations. The first one, which is as in (Alvarez-Mena and Hernández-Lerma, Math Methods Oper Res 63:261–285, 2006), is to construct a sequence of finite games to approximate a (constrained) auxiliary game with an initial distribution that is concentrated on a finite set. However, without hypotheses of bounded costs as in (Alvarez-Mena and Hernández-Lerma, Math Methods Oper Res 63:261–285, 2006), we also establish the existence of a Nash equilibrium for the auxiliary game with unbounded costs by developing more shaper error bounds of the approximation. The second one, which is new, is to construct a sequence of the auxiliary-type games above and prove that the limit of the sequence of Nash equilibria for the auxiliary-type games is a Nash equilibrium for the original constrained games. Our results are illustrated by a controlled queueing system.  相似文献   

16.
In this paper we derive a multi-choice TU game from r-replica of exchange economy with continuous, concave and monetary utility functions, and prove that the cores of the games converge to a subset of the set of Edgeworth equilibria of exchange economy as r approaches to infinity. We prove that the dominance core of each balanced multi-choice TU game, where each player has identical activity level r, coincides with the dominance core of its corresponding r-replica of exchange economy. We also give an extension of the concept of the cover of the game proposed by Shapley and Shubik (J Econ Theory 1: 9-25, 1969) to multi-choice TU games and derive some sufficient conditions for the nonemptyness of the core of multi-choice TU game by using the relationship among replica economies, multi-choice TU games and their covers.  相似文献   

17.
Characterizations of Nash equilibrium, correlated equilibrium, and rationalizability in terms of common knowledge of rationality are well known. Analogous characterizations of sequential equilibrium, (trembling hand) perfect equilibrium, and quasi-perfect equilibrium in n-player games are obtained here, using earlier results of Halpern characterizing these solution concepts using non-Archimedean fields.  相似文献   

18.
The application of Internet of Things promotes the cooperation among firms, and it also introduces some information security issues. Due to the vulnerability of the communication network, firms need to invest in information security technologies to protect their confidential information. In this paper, considering the multiple-step propagation of a security breach in a fully connected network, an information security investment game among n firms is investigated. We make meticulous theoretic and experimental analyses on both the Nash equilibrium solution and the optimal solution. The results show that a larger network size (n) or a larger one-step propagation probability (q) has a negative effect on the Nash equilibrium investment. The optimal investment does not necessarily increase in n or q, and its variation trend depends on the concrete conditions. A compensation mechanism is proposed to encourage firms to coordinate their strategies and invest a higher amount equal to the optimal investment when they make decisions individually. At last, our model is extended by considering another direct breach probability function and another network structure, respectively. We find that a higher connection density of the network will result in a greater expected cost for each firm.  相似文献   

19.
This study considers evolutionary games with non-uniformly random matching when interaction occurs in groups of \(n\ge 2\) individuals using pure strategies from a finite strategy set. In such models, groups with different compositions of individuals generally co-exist and the reproductive success (fitness) of a specific strategy varies with the frequencies of different group types. These frequencies crucially depend on the matching process. For arbitrary matching processes (called matching rules), we study Nash equilibrium and ESS in the associated population game and show that several results that are known to hold for population games under uniform random matching carry through to our setting. In our most novel contribution, we derive results on the efficiency of the Nash equilibria of population games and show that for any (fixed) payoff structure, there always exists some matching rule leading to average fitness maximization. Finally, we provide a series of applications to commonly studied normal-form games.  相似文献   

20.
A traditional assumption in game theory is that players are opaque to one another—if a player changes strategies, then this change in strategies does not affect the choice of other players’ strategies. In many situations this is an unrealistic assumption. We develop a framework for reasoning about games where the players may be translucent to one another; in particular, a player may believe that if she were to change strategies, then the other player would also change strategies. Translucent players may achieve significantly more efficient outcomes than opaque ones. Our main result is a characterization of strategies consistent with appropriate analogues of common belief of rationality. Common Counterfactual Belief of Rationality (CCBR) holds if (1) everyone is rational, (2) everyone counterfactually believes that everyone else is rational (i.e., all players i believe that everyone else would still be rational even if i were to switch strategies), (3) everyone counterfactually believes that everyone else is rational, and counterfactually believes that everyone else is rational, and so on. CCBR characterizes the set of strategies surviving iterated removal of minimax-dominated strategies, where a strategy \(\sigma \) for player i is minimax dominated by \(\sigma '\) if the worst-case payoff for i using \(\sigma '\) is better than the best possible payoff using \(\sigma \).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号