首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The objective of this paper is to evaluate the averaged elastic properties of 3-D grained composites in which identical inclusions form a prismatic network interacting with the matrix material. The inclusions are of ellipsoidal shape with transverse circular sections located at the nodes of a doubly-periodic lattice with an orthogonal elementary cell. When the arrays of inclusions are set at equal spacings in normal directions through the thickness of the matrix, the material formed is an anisotropic composite with tetragonal symmetry at planes transverse to the fiber axis. The longitudinal and transverse elastic and shear moduli as well as the longitudinal Poisson's ratios of such composites are evaluated in this paper. The averaged properties are studied in terms of the aspect ratio and volume fraction of the inclusions as well as the relative rigidity of the constituent phases. Employing the Eshelby's theory for the stress field around a single ellipsoidal inhomogeneity, which is surrounded by the effective anisotropic material, and considering the Mori-Tanaka's concept for the mutual interaction of the neighboring inclusions, we may evaluate the averaged elastic properties of grained composites with aligned ellipsoidal inclusions at finite concentrations. The results provided in a closed-form solution concern the stiffness of 3-D grained composites with parallely dispersed ellipsoidal inclusions forming a prismatic network inside the principal material. It is shown that the stiffness is affected by both the geometry of the inclusions and their concentration. The use of different composite models in the analysis shows that intense variations of stiffness occur mainly in hard composites weakened by soft ellipsoidal inclusions. These findings come in full verification with experimental or theoretical results from the literature. Received 10 February 1998; accepted for publication 27 November 1998  相似文献   

2.
The paper is concerned with composite materials which consist of a homogeneous matrix phase with a set of inclusions uniformly distributed in the matrix. The components of these materials are considered to be ideally elastic and exhibit piezoelectric properties. One of the variants of the self-consistent scheme, the Effective Field Method (EFM) is applied to calculate effective dielectric, piezoelectric and thermoelastic properties of such materials, taking into account the coupled electroelastic effects. At first the coupled thermoelectroelastic problem for a homogeneous medium with an isolated inclusion is solved. For an ellipsoidal inclusion and constant external field the solution of this problem is found in a closed analytic form. This solution is then used in the EFM to derive the effective thermoelectroelastic operator for the composite containing a random array of ellipsoidal inclusions. Explicit formulae for the electrothermoelastic constants are given for composites, reinforced by spheroidal inclusions.  相似文献   

3.
A new model is put forward to bound the effective elastic moduli of composites with ellipsoidal inclusions. In the present paper, transition layer for each ellipsoidal inclusion is introduced to make the trial displacement field for the upper bound and the trial stress field for the lower bound satisfy the continuous interface conditions which are absolutely necessary for the application of variational principles. According to the principles of minimum potential energy and minimum complementary energy, the upper and lower bounds on the effective elastic moduli of composites with ellipsoidal inclusions are rigorously derived. The effects of the distribution and geometric parameters of ellipsoidal inclusions on the bounds of the effective elastic moduli are analyzed in details. The present upper and lower bounds are still finite when the bulk and shear moduli of ellipsoidal inclusions tend to infinity and zero, respectively. It should be mentioned that the present method is simple and needs not calculate the complex integrals of multi-point correlation functions. Meanwhile, the present paper provides an entirely different way to bound the effective elastic moduli of composites with ellipsoidal inclusions, which can be developed to obtain a series of bounds by taking different trial displacement and stress fields.  相似文献   

4.
Since piezoelectric ceramic/polymer composites have been widely used as smart materials and smart structures, it is more and more important to obtain the closed-from solutions of the effective properties of piezocomposites with piezoelectric ellipsoidal inclusions. Based on the closed-from solutions of the electroelastic Eshelby's tensors obtained in the part I of this paper and the generalized Budiansky's energy-equivalence framework, the closed-form general relations of effective electroelastic moduli of the piezocomposites with piezoelectric ellipsoidal inclusions are given. The relations can be applicable for several micromechanics models, such as the dilute solution and the Mori-Tanaka's method. The difference among the various models is shown to be the way in which the average strain and the average electric field of the inclusion phase are evaluated. Comparison between predicted and experimental results shows that the theoretical values in this paper agree quite well with the experimental results. These expression can be readily utilized in analysis and design of piezocomposites. The project supported by the National Natural Science Foundation of China  相似文献   

5.
In the present paper, we will illustrate the application of the method of conditional moments by constructing the algorithm for determination of the effective elastic properties of composites from the given elastic constants of the components and geometrical parameters of inclusions. A special case of two-component matrix composite with randomly distributed unidirectional spheroidal inclusions is considered. To this end it is assumed that the components of the composite show transversally isotropic symmetry of thermoelastic properties and that the axes of symmetry of the thermoelastic properties of the matrix and inclusions coincide with the coordinate axis x 3. As a numerical example a composite based on carbon inclusions and epoxide matrix is investigated. The dependencies of Young’s moduli, Poisson’s ratios and shear modulus from the concentration of inclusions and for certain values which characterize the shape of inclusions are analyzed. The results are compared and discussed in context with other theoretical predictions and experimental data.   相似文献   

6.
基于等效特征应变原理,提出了一种新的复合材料有效模量细观力学分析方法。首先,在等效特征应变原理基础上提出平均等效特征应变原理,它可用于解决有限体下任意形状(无论是凸或凹形)的单个夹杂或多个夹杂的弹性变形问题。其次,将平均等效特征应变原理与细观力学直接均匀法相结合,来分析确定复合材料的有效模量。最后利用复合材料纤维与基体的力学性能参数及纤维的体分比,借助MATLAB编程方法,预测其有效模量。通过将理论预测值与已有的的试验值、其它理论预测值进行对比,验证了新分析方法的合理性和分析精度。  相似文献   

7.
Summary  We consider a linearly thermoelastic composite medium, which consists of a homogeneous matrix containing a statistically inhomogeneous random set of ellipsoidal uncoated or coated inclusions, where the concentration of the inclusions is a function of the coordinates (functionally graded material). Effective properties, such as compliance and thermal expansion coefficient, as well as first statistical moments of stresses in the components are estimated for the general case of inhomogeneity of the thermoelastic inclusion properties. The micromechanical approach is based on the Green function technique as well as on the generalization of the multiparticle effective field method (MEFM), previously proposed for the research of statistically homogeneous random structure composites. The hypothesis of effective field homogeneity near the inclusions is used; nonlocal effects of overall constitutive relations are not considered. Nonlocal dependences of local effective thermoelastic properties as well as those of conditional averages of the stresses in the components on the concentration of the inclusions are demonstrated. Received 11 November 1999; accepted for publication 4 May 2000  相似文献   

8.
In order to predict the effective properties of multiferroic composite materials, the effective material constants of multiferroic composites with the coated inclusion and imperfect interface are investigated. Based on the generalized self-consistent theory, the closed-form solutions of the effective material constants are derived. For the composites with piezomagnetic inclusion, piezoelectric coating and polymer matrix, numerical calculations are performed to present the influences of the imperfect interface cooperating with the coating on the effective material constants. From the results, it can be observed that the effective constants can be enhanced by the coating but reduced by the imperfect interface. Moreover, the coating has the shielding effects on the imperfect interface for the composite structures with its higher filling ratio.  相似文献   

9.
With respect to obtaining the effective elastic moduli of the composite, the present theory differs from both Eshelby's equivalent inclusion method and Hill's self-consistent one, both of which only consider the mechanical properties of the matrix and inclusions (fibers). In fact, the inclusion-inclusion interaction is more pronounced when the volume fraction of inclusions of the composite increases. Hence, in this paper the effective elastic moduli of the composite are derived by taking into account the shapes, sizes and distribution of inclusions, and the interactions between inclusions. In addition, it is more convincing to assume short-fibers as cylindrical inclusions as in the present paper than as ellipsoidal ones as in others[7,8]. Finally, numerical results are given.  相似文献   

10.
In this work, a modeling of electroelastic composite materials is proposed. The extension of the heterogeneous inclusion problem of Eshelby for elastic to electroelastic behavior is formulated in terms of four interaction tensors related to Eshelby’s electroelastic tensors. Analytical formulations of interaction tensors are presented for ellipsoidal inclusions. These tensors are basically used to derive the self-consistent model, Mori–Tanaka and dilute approaches. Numerical solutions are based on numerical computations of these tensors for various types of inclusions. Using the obtained results, effective electroelastic moduli of piezoelectric multiphase composites are investigated by an iterative procedure in the context of self-consistent scheme. Generalised Mori–Tanaka’s model and dilute approach are re-formulated and the three models are deeply analysed. Concentration tensors corresponding to each model are presented and relationships of effective coefficients are given. Numerical results of effective electroelastic moduli are presented for various types of piezoelectric inclusions and for various orientations and compared to existing experimental and theoretical ones.  相似文献   

11.
A general micromechanical method is developed for a micropolar composite with ellipsoidal fibers, where the matrix material is idealized as a micropolar material model. The method is based on a special micro–macro transition method, and the classical effective moduli for micropolar composites can be determined in an analytical way. The influence of both fiber’s shape and size can be analyzed by the proposed method. The effective moduli, initial yield surface and effective nonlinear stress and strain relation for a micropolar composite reinforced by ellipsoidal fibers are examined, it is found that the prediction on the effective moduli and effective nonlinear stress and strain curves are always higher than those based on classical Cauchy material model, especially for the case where the size of fiber approaches to the characteristic length of matrix material. As expected, when the size of fiber is sufficiently large, the classical results (size-independence) can be recovered.  相似文献   

12.
We consider statistically homogeneous two-phase random piezoactive structures with deterministic properties of inclusions and the matrix and with random mutual location of inclusions. We present the solution of a coupled stochastic boundary value problem of electroelasticity for the representative domain of a matrix piezocomposite with a random structure in the generalized singular approximation of the method of periodic components; the singular approximation is based on taking into account only the singular component of the second derivative of the Green function for the comparison media. We obtain an analytic solution for the tensor of effective properties of the piezocomposite in terms of the solution for the tensors of effective properties of a composite with an ideal periodic structure or with the “statistical mixture” structure and with the periodicity coefficient calculated for a given random structure with its specific characteristics taken into account. The effective properties of composites with auxiliary structures (periodic and “statistical mixture”) are also determined in the generalized singular approximation by varying the properties of the comparisonmedium. We perform numerical computations and analyze the effective properties of a quasiperiodic piezocomposite with reciprocal polarization of oriented ellipsoidal inclusions and the matrix, the layered structures with reciprocal polarization of the layers [1] of a polymer piezoelectric PVF, and find their unique properties such as a significant increase in the Young modulus along the normal to the layers and in dielectric permittivities, the appearance of negative values of the Poisson ratio under extension along the normal, and an increase in the absolute values of the basic piezomoduli.  相似文献   

13.
Composite materials are widely used in industrial applications because of their excellent properties and behaviors. While a composite material is defined as a mixture of two or more different materials, many research works in the literature dealt with composites of only two constituents, which are matrix and one type of particles. On the other hand, the theoretical research works that dealt with more than two constituents are rare. Using some additives affects the sintering behavior, the tribological behavior and the fracture mechanics behavior of composites. For example, a suitable amount of additives as sintering aids, in the sintering process, could lower the sintering temperature, enhance phase wettability and bonding strength and improve the interlaminar fracture resistance of a composite. Therefore, it is worthwhile to develop the constitutive laws that describe the behavior of such composite materials. Accordingly, the aim of this paper is to modify the previous paper, Shabana (2003) [Shabana, Y.M., 2003. Incremental constitutive equation for discontinuously reinforced composites considering reinforcement damage and thermoelastoplasticity. Computational Materials Science 28, 31–40], in order to propose constitutive laws that predict the thermomechanical behavior of composites containing multi-type ellipsoidal reinforcements. This includes reinforcements with different materials and/or different shapes that are represented by aspect ratios. These constitutive laws not only predict the macroscopic and microscopic thermoelastoplastic behaviors of composites containing multi-type ellipsoidal reinforcements, but also characterize their different overall effective properties such as modulus of elasticity, Poison’s ratio and thermal expansion coefficient in different directions. Beside this, they are applicable for porous materials and composites with multiple reinforcements and porosities of different shapes and distributions. In the present numerical analyses, composites with two, three and four constituents considering different materials and aspect ratios as well as reinforcement damage are discussed.  相似文献   

14.
An analytical framework based on the homogenization method has been developed to predict the effective electromechanical properties of periodic, particulate and porous, piezoelectric composites with anisotropic constituents. Expressions are provided for the effective moduli tensors of n-phase composites based on the respective strain and electric field concentration tensors. By taking into account the shape and distribution of the inclusion and by invoking a simple numerical procedure, solutions for the electromechanical properties of a general anisotropic inclusion in an anisotropic matrix are obtained. While analytical forms are provided for predicting the electroelastic moduli of composites with spherical and cylindrical inclusions, numerical evaluation of integrals over the composite microstructure is required in order to obtain the corresponding expressions for a general ellipsoidal particle in a piezoelectric matrix. The electroelastic moduli of piezoelectric composites predicted by the analytical model developed in the present study demonstrate excellent agreement with results obtained from three-dimensional finite-element models for several piezoelectric systems that exhibit varying degrees of elastic anisotropy.  相似文献   

15.
I.IntroductionWhethertheinterfacesofcompositematerialsareperfectornotwillaffectitsmacromechanicaloreffectivepropertiesimportantly.Butsofar,almostallofthestudiesontheeffectivepropertiesofcompositematerialsarebasedontheassumptionthattheinterfacesareperfectl"2].Infact,thisisnotappropriateforallinterfaces[31.Thusthestudiesonmechanicalpropertyofcompositematerialswithimperfaceintert'acehavebeenconsideredrecentlyinsomeliteratures.Hashin16]hasextendedtheelasticextremumprinciplesofminimumpotentialandm…  相似文献   

16.
含正交排列夹杂和缺陷材料的等效弹性模量和损伤   总被引:3,自引:0,他引:3  
赵爱红  虞吉林 《力学学报》1999,31(4):475-483
研究含正交排列夹杂和缺陷材料的等效弹性模量和损伤,推导了以Eshelby-Mori-Tanaka方法求解多相各向异性复合材料等效弹性模量的简便计算公式,针对含三相正交椭球状夹杂的正交各向异性材料,得到了由细观参量(夹杂的形状、方位和体积分数)表示的等效弹性模量的解析表达式.在此基础上,提出了一个宏细观结合的正交各向异性损伤模型,从而建立了以细观量为参量的含损伤材料的应力应变关系.最后,对影响材料损伤的细观结构参数进行了分析.  相似文献   

17.
The problem of determining overall thermoelastic moduli of some solid composites is discussed. The phases may be arbitrarily anisotropic. One phase is required to be a matrix and the remainder are required to be aligned ellipsoidal inclusions. The volume concentrations are arbitrary. Some exact results are obtained for a binary composite. In the general case the self-consistent method is used to estimate the overall moduli. The general results are shown to reduce to those known for an isotropic dispersion of spheres.  相似文献   

18.
A mixed analytical-numerical (boundary element method) procedure is presented for estimating the effective elastic moduli of a two-phase periodic composite by application of a unit cell. The two-phase composite consists of a metal/polymer matrix and one/three circular ceramic inclusions with adhesive and partial debonding of the interface. The results are displayed numerically with special attention given to development of plastic zones as debonding occurs. Dependence of load-time history is exhibited.  相似文献   

19.
A digital image processing technique is used for measurement of centroid coordinates of fibers with forthcoming estimation of statistical parameters and functions describing the stochastic structure of a real fiber composite. Comparative statistical analysis of the real and numerically simulated structure are performed. Accompanying of known methods of the generation of random configurations by the random shaking procedure allows creating of the most homogenized and mixed structures that do not depend on the initial protocol of particle generation. We consider a linearly elastic composite medium, which consists of a homogeneous matrix containing a statistically homogeneous set of ellipsoidal inclusions. The multiparticle effective field method (see for references, Buryachenko, Appl. Mech. Rev., (2001a), 54, 1–47) based on the theory of functions of random variables and Green’s functions is used for demonstration of the dependence of effective elastic moduli of fiber composites on the radial distribution functions estimated from the real experimental data as well as from the ensembles generated by the method proposed.  相似文献   

20.
The present work is devoted to the determination of the macroscopic poroelastic and porothermoelastic properties of geomaterials or rock-like composites constituted by an isotropic matrix with embedded ellipsoidal inhomogeneities and/or pores randomly oriented. By considering the solution of a single ellipsoidal inhomogeneity in the homogenization problem it is possible to observe the significant influence of the shape of inhomogeneities on the effective porothermoelastic properties. In the particular case of microscopic and macroscopic isotropic behaviors, a closed form solution based on analytical integrate of the Eshelby solution for the single ellipsoidal inhomogeneity can be obtained for the randomly oriented distribution. This result completes the well known solutions in the limiting cases of spherical and penny shape inhomogeneities. Based on recent works on porous rock-like composites such as shales or argillites, an application of the developed solution to a two-level microporomechanics model is presented. The microporosity in homogenized at the first level, and multiple solid mineral phase inclusions are added at the second level. The overall porothermoelastic coefficients are estimated in the particular context of heterogeneous solid matrix. Numerical results are presented for data representative of isotropic rock-like composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号