首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When concentrated forces are applied at any points of the outer region of an ellipse in an infinite plate, the complex potentials are determined using the conformal mapping method and Cauchy's integral formula. And then, based on the superposition principle, the analytical solutions for stress around an elliptical hole in an infinite plate subjected to a uniform far-field stress and concentrated forces, are obtained. Tangential stress concentration will occur on the hole boundary when only far-field uniform loads are applied. When concentrated forces are applied in the reversed directions of the uniform loads, tangential stress concentration on the hole boundary can be released significantly. In order to minimize the tangential stress concentration, we need to determine the optimum positions and values of the concentrated forces. Three different optimization methods are applied to achieve this aim. The results show that the tangential stress can be released significantly when the optimized concentrated forces are applied.  相似文献   

2.
In this paper, nonlinear stability of thin elastic circular shallow spherical shell under the.action of uniform edge moment is considered by the modified iteration method to obtain second and third approximations to decide the upper and lower critical loads. Results are plotted in curves for the engineering use and are compared with results of Hu Hai-chang’s. We also investigate the neighbour situation of the critical point, i.e. the double points of the upper and lower critical loads and denote the range of validity of the second approximation. In the end, we obtain the special case, the design formulas of rigidity and stress as well as the corresponding curves as v=0.3 of large deflection of circular plate under the same load. These results are also compared with Huang Tse-yen’s.  相似文献   

3.
The buckling, postbuckling and postbuckled vibration behaviour of composite skew plates subjected to nonuniform inplane loadings are presented here. The skew plate is modelled using first order shear deformation theory accounting for von-Kármán geometric nonlinearity and initial geometric imperfections. The different types of nonuniform loads that have been considered in this study are concentrated load, partial load and parabolic load. The explicit analytical expressions for prebuckling stress distributions within composite skew plate subjected to three different types of nonuniform inplane loadings are developed by solving plane elasticity problem using Airy's stress function approach. It is observed that the inplane normal stress distributions within the skew plate due to above nonuniform loadings do not become uniform even at mid-section. The generalized differential quadrature (GDQ) method is used to solve the nonlinear governing partial differential equations. It is observed that the postbuckled load carrying capacity of skew plate under concentrated loading is the lowest compared to other nonuniform and uniform loadings.  相似文献   

4.
A preliminary investigation has been conducted on instrumented fasteners for use as sensors to measure the shear loads transmitted by individual fasteners installed in double-splice joints. Calibration and load verification tests were conducted for instrumented fasteners installed at three fastener torque levels. Results from calibration tests show that the shear strains obtained from the instrumented fasteners vary linearly with the applied load and that the instrumented fasteners can be effectively used to measure shear loads transmitted by individual fasteners installed in double-splice joints. Tests were also conducted with three instrumented fasteners installed in a typical double-splice joint. The test results showed that the load distribution between individual fasteners is dependent on the location of the fastener in the joint and the fastener torque level. The fastener located near the end of the joint with the single plate carried more load than the fasteners located near the end of the joint with the two plates. Installing the fasteners with a torque greater than finger tight results in a significant amount of the load being carried by friction between the faying surfaces of the plates even if the faying surfaces are polished and lubricated. Increasing the fastener torque increases the load being carried by friction between the faying surfaces of the joint. Increasing friction between the faying surfaces of the joint. Increasing the fastener torque also results in a more uniform distribution of the loads between the individual fasteners for joints in aluminum plates with two fasteners, but does not have a significant effect for joints in steel plates with three fasteners. Paper was presented at the 1992 SEM Spring Conference on Experimental Mechanics held in Las Vegas, NV on June 8–11.  相似文献   

5.
Using the Schwarz's alternating method and the Muskhelishvili's complex variable function techniques, an efficient and accurate stress solution for an infinite elastic plate around two elliptic holes, subjected to uniform loads on the hole boundaries and at infinity, is presented in this paper. The present algorithm can be used to compute the stress concentration factors (SCF), i.e., the ratio of the maximum tangential hoop stress to the applied uniform load, on the boundaries of the two elliptical holes of different sizes and layouts under different loading conditions, as illustrated in two numerical cases.  相似文献   

6.
本文建立多圆荷载作用下弹性半空间体上薄板的挠度与应力的计算式。荷载数量及分布任意,每个圆荷载密度与轮迹半径彼此相异。对计算式中的反常积分及级数的收敛性予以证明。对含振荡函数反常积分建议一种方便的算法。  相似文献   

7.
The elastic fracture behavior of a plate subjected to uniform stress surrounding two equal cracks inclined at an angle is investigated. The orientation of the crack plane with applied stress can be varied. Among the cases are: (1) two cracks inclined symmetrically with respect to the vertical and horizontal applied stress, and (2) one crack is horizontal while the other is inclined to the vertical applied stress. The strain energy density criterion is used for determining the combined crack and load arrangement that correspond to the lowest critical load at global instability. The direction of crack initiation is also determined. Quantitative results pertaining to the fracture characteristics are given in graphical forms.  相似文献   

8.
The elastic fracture behavior of a plate subjected to uniform stress surrounding two equal cracks inclined at an angle is investigated. The orientation of the crack plane with applied stress can be varied. Among the cases are: (1) two cracks inclined symmetrically with respect to the vertical and horizontal applied stress, and (2) one crack is horizontal while the other is inclined to the vertical applied stress. The strain energy density criterion is used for determining the combined crack and load arrangement that correspond to the lowest critical load at global instability. The direction of crack initiation is also determined. Quantitative results pertaining to the fracture characteristics are given in graphical forms.  相似文献   

9.
IntroductionCorrugateddiaphragmisatypeofelasticthinshells .Itsdesignisverycomplicatedbecauseoftoomanyparametersthatinfluenceeachother.Inanumberofinstrumentsmeasuringdisplacements,corrugateddiaphragmissubjectedtoelasticdisplacementthatisatleastthesameorderasitsthickness,sothatitisnecessarytousegeometricalnonlineartheoryofthinshellstoanalyze.Sofarasweknow ,inmostcases,investigatorsdiscussedonlytheproblemofcorrugateddiaphragmwithuniformanddensecorrugationsundertheactionofaunique(uniformlyorconcen…  相似文献   

10.
The stability problem of a centrally compressed infinite plate is solved with allowance for the transverse normal deformation caused by uniform load for various boundary conditions at the edges. The linearized nonlinear equations of elastic deformation of thin plates taking into account transverse shear and transverse normal deformation are used. The obtained critical loads are compared with existing solutions.Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 2, pp. 170–178, March–April, 2005.  相似文献   

11.
A perfect rigid–plastic body is used as a model to develop a general procedure for analyzing the dynamic behavior of an arbitrary curvilinear plate of variable thickness with an arbitrary internal hole. The plate is subjected to an arbitrary, uniform, short-term dynamic surface load. Two plate deformation patterns are considered. Analytic formulas for plastic zones, ultimate loads, and residual deflections are presented. Numerical examples are given  相似文献   

12.
曾祥太  吕爱钟 《力学学报》2019,51(1):170-181
无限平板中含有任意形状单个孔的问题可以使用复变函数方法获得其应力解析解.对于无限平板中含有两个圆孔或两个椭圆孔的双连通域问题,也可以利用多种方法进行求解,比如双极坐标法、应力函数法、复变函数法以及施瓦茨交替法等.其中复变函数中的保角变换方法是获得应力解析解的一个重要方法.但目前尚未见到用此方法求解无限板中含有一个正方形孔和一个椭圆孔的问题.当板在无穷远处受有均布载荷和孔边作用垂直均布压力时,利用保角变换方法可以求解板中含有两个特定形状孔的问题.该方法将所讨论的区域映射成象平面里的一个圆环,其中最关键的一步是找出相应的映射函数.基于黎曼映射定理,提出了该映射函数一般形式,并利用最优化方法,找到了该问题的具体映射函数,然后通过孔边应力边界条件建立了求解两个解析函数的基本方程,获得了该问题的应力解析解.运用ANSYS有限单元法与结果进行了对比.研究了孔距、椭圆形孔大小和两孔布置方位对边界切向应力的影响,以及不同载荷下两孔中心线上应力分布规律.   相似文献   

13.
Generalized 2D problem of piezoelectric media containing collinear cracks   总被引:3,自引:0,他引:3  
The generalized 2D problem in piezoelectric media with collinear cracks is addressed based on Stroh's formulation and the exact electric boundary conditions on the crack faces. Exact solutions are obtained, respectively, for two special cases: one is that a piezoelectric solid withN collinear cracks is subjected to uniform loads at infinity, and the other is that a piezoelectric solid containing a single crack is subjected to a line load at an arbitrary point. It is shown when uniform loads are applied at infinity or on the crack faces that, the stress intensity factors are the same as those of isotropic materials, while the intensity factor of electric displacement is dependent on the material constants and the applied mechanical loads, but not on the applied electric loads. Moreover, it is found that the electric field inside any crack is not equal to zero, which is related to the material properties and applied mechanical-electric loads. The project supported by the National Natural Science Foundation of China (19772004)  相似文献   

14.
The normal stress ratio theory is applied to predict crack extension behavior in center-notched unidirectional graphite-epoxy of arbitrary fiber axis orientation, subjected to arbitrary far-field planar loading. The theory is applied within analytical solutions for two infinite plate geometries: a plate with a sharp center crack, and a plate with an elliptical center flaw. A critical analytical case is identified suggesting that application of the theory within a stress solution modelling crack tip shape may increase the accuracy of crack growth direction predictions. Crack extension direction, location of crack extension, and critical stress predictions of the theory are compared to those obtained from experiments on specimens subjected to tensile, shear, and mixed-mode far-field loading. The comparison shows that, applied within each analytical solution, the normal stress ratio theory provides verifiable predictions of crack growth behavior. By modelling actual notch tip shape, the elliptical notch solution is able to provide accurate qualitative predictions of the origin of crack extension along the periphery of a cut notch tip in a way that the sharp crack analysis cannot. The sharp notch solution appears to provide slightly more accurate crack growth direction predictions, however. Also, in predicting critical applied far-field stresses, the sharp crack solution appears to exhibit a stronger ability to model subtle experimental trends.  相似文献   

15.
This paper analyzes the stability of the elastic rectangular thin plates with sinusoidal changes in the plate thickness. The buckling load is defined in a weighted residual approach for different boundary conditions. The influence of the plate thickness variation and the edge ratio on the critical loads is investigated. The results are compared to the case of uniform thickness.  相似文献   

16.
Shallow, linearly elastic arches of unspecified form but with given uniform cross section and material are considered. For given span and length of the arch, two different optimization problems are formulated and solved. In the first, we determine the form of the arch which maximizes the fundamental vibration frequency. The corresponding vibration mode turns out to be either symmetric or antisymmetric. In the second, a static load with given spatial distribution is considered, and the critical value of the load magnitude for snap-through instability is maximized. This instability may occur at a limit point or a bifurcation point. Optimal forms are determined for sinusoidal loading, uniform loading, and a central concentrated load. In both types of problems, arches with simply supported or clamped ends are considered, and the maximum frequencies and critical loads obtained are compared to those for a circular arch with similar end conditions. In all the cases with simply supported ends, it is found that a circular arch is almost optimal. For clamped ends, however, it turns out that the optimal arches have zero slope at the ends and that they are much more efficient than a circular arch.  相似文献   

17.
郭强  沈惠申 《力学季刊》2004,25(3):355-361
基于Reissner-Mindlin一阶剪切变形板理论,讨论在预加面内机械荷载或温度场作用下,点支撑中厚矩形板的弯曲问题。温度场假定沿板表面为均布,沿板厚方向为线性分布的。利用考虑剪切变形影响的Timoshenko梁函数,采用Rayleigh-Ritz法给出不同边界条件下点支撑中厚板在横向荷载作用下的挠度和弯矩分布。结果表明,均匀温度场与预加面内压力将使板的挠度和弯矩增加。支撑点位置的变化、边界约束条件和横向剪切变形效应都对板的内力大小和分布有显著影响。  相似文献   

18.
The von Kármán large deflection equations for laterally loaded rectangular plates are extended to include uniform prestresses parallel to the edges and are solved for uniform load and for edges which are simply supported against movement normal to the plane of the plate and which are either held or free to move as a rigid body in the plane of the plate. Calculated values of center deflection and maximum stress parameters are given as functions of the load parameter for plates of various aspect ratios.  相似文献   

19.
The governing differential equations and the boundary conditions for the large deflection of rectangular sandwich plates are derived using the principle of the complementary energy. The governing differential equations are transformed into systems of nonlinear algebraic equations using the finite difference method, and solved by successive iteration. For the purpose of illustration, deflection behavior of simply supported rectangular plates under uniform load is presented. The deflection behavior of plates with various values of shear rigidities and intensity of applied loads is studied. The change in the stress patterns of the face layers of the plate is also discussed.  相似文献   

20.
A general derivation of expressions for lower bounds to fundamental frequencies and buckling loads is given for the class of structures governed by linear elastic theory in the prebuckling state. These expressions involve two Rayleigh quotients both of which are upper bounds for the fundamental frequency under a prescribed load. The displacement trial functions must satisfy force and kinematic continuity but no other conditions are required. Thus, if appropriate high order base functions are used, the finite element procedure can be used to systematically narrow the difference between the upper and lower bounds.The theory is illustrated with several column and plate problems. The finite element method is applied to uniform and nonuniform columns with a representative set of boundary conditions. Elementary trial functions are used to show that reasonable bounds can also be obtained for plates subjected to known states of stress. Since the lower bound is obtained with a variation of the classical technique of Rayleigh, these results indicate that the method may be suitable for conservatively estimating buckling loads and fundamental frequencies of engineering structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号